US006272672B1

2 United States Patent (10) Patent No.: US 6,272,672 B1
Conway 45) Date of Patent: *Aug. 7, 2001
(54) DATAFLOW PROCESSING WITH EVENTS 6,032,124 * 2/2000 Saito et al. wooovooeroereerr 705/9

(76) Inventor: Melvin E. Conway, 8 Brook Head OTHER PUBLICATIONS

Ave., Beverly, MA (US) 01915 “Business Process Management with FlowMark”, F. Ley-
) mann et al. Software Dev. Lab., IBM Germany Dev. Inc.
(*) Notice: This patent issued on a continued pros- Compcom Spring 94, Mar. 1994 *

ecution application filed under 37 CFR “WWWorkflow: World Wide Web based Workfow”, C.K.
1.53(d), and is subject to the twenty year Ames et al. IEEE pp. 397-404, 1997.*

patent term provisions of 35 U.S.C. “Object Models for Business Transaction Processing Sys-
154(a)(2). tems”, Francis Anderson, Feb. 2000.*
OOPSLA °97 Business Object Workshop, Business Object
Subject to any disclaimer, the term of this Design and Implementation IIL“www.acm.org/pubs/”, Oct.
patent is extended or adjusted under 35 1997.*
U.S.C. 154(b) by 0 days. ACM Digital Library, Communications of the ACM vol. 38,
Issue 10 (1995) The Promise and the cost of object tech-
(21) Appl. No.: 08/524,170 nology: a five—year forecast, 1995.*
. No.: ,
(22) Filed: Sep. 6, 1995 (List continued on next page.)
7 Primary Examiner—Tariq R. Hafiz
(2;) glts (31 .. G06F7i{74;41t Assistant Examiner—Todd Tngberg
(52) US. Cl .o evasescssenieseeseses 74) Attorney, Agent, or Firm—Fish & Richardson P.C.
(58) Field of Search 395/701, 702 A8
ield of Searchcccovvvcinnecnnnn. , 702,
395/703, 704, 705, 706, 707, 708, 709, (57) ABSTRACT

710, 712; 345/326, 333-335; 717/1 . .
Interactive event-driven programs are structured and

executed using two types of constructs: interconnectable

0 References Cited processing components and flow objects with associated
U.S. PATENT DOCUMENTS data. Components are interconnected in a hierarchical data-

flow network, and references which provide access to flow

4,901,221 2/1990 Kodosky et al. . objects flow on the interconnections. Response to events and

4914568 4/1990 Kodosky et al. . bidirectional coordination over multicomponent data paths,

5,535,322 * 7/1996 Hechtccovvvvivivvviniicrnncnnn 717/1 . P : oy .
5537630 * 7/199 Berry et al. 45306 even in a dlStI'.lbuth object system, employ unldlrecn’onal
5,546,519 * 8/1996 BEITy .ooeoo. o 345/326 dataflows and intercomponent message sequences mediated
5,553,002 * 9/1996 Dangelo et al. 364/489 by ﬂpw objects. Scaling .and abstraction of complexity.are
5,598,524 * 1/1997 Johnston, Jr. et al. ... 395/348 facilitated by encapsulation of constructed networks into
5,642,511 * 6/1997 Chow et al. 395/701 new component definitions. An interactive debugger pre-
5,736,984 * 4/1998 Jellinek et al. 345/338 serves state as an executing program is edited, permitting an
5,790,857 * 8/1998 Clifford et al. 3957703 event-driven program to be modified in the intervals
5,822,521 : 10/1998 Gartner et al. . - 709/230 between processing of events without reinitialization. A
g’ggg’égg . 18/ }ggg gu eltl al. pn 30305(@ component protection method employs multiple Levels of
5000705 * 7;1999 Mr:cetoale ta 395?312 usage authorization within components, enabling developers
5024101 * 7/1999 Bach et al 707/103 to define and distribute new protected components in a
5937388 * 8/1999 Davis ct al. 705/8 decentralized component market.

6,009,405 * 12/1999 Leymann et al ... 705/9

6,014,673 * 1/2000 Davis et al. ..ccoceeeerererreeenenne 707/202 151 Claims, 77 Drawing Sheets

Flow object

Object header el String object
[[Handle of text distinguisher . Icon or icon collection
?g Handle of icon distinguisher |~ N or Toicron .
S [Handle of owner —7 et
§ Handle of dependent set > Set of reference pairs
l ::23:2 g; 222 f)?)j'ect i‘Set of component references

IMO or other object

US 6,272,672 Bl
Page 2

OTHER PUBLICATIONS

“Is Workflow “Fascist” Software?”, R. T. Marshak. Work-
group Computing Report vol. 19. No. 7, Unknown.*
ACM Annual Computer Science Conference, A workplan
for business process reengineering and a challenge for
information science and technology, Mar. 2, 1995.*

Policy Resolution for a workflow management system, C.
Butler et al. IEEE Proceedings of the 28” Annual Hawaii
Int’l Conf. on System Sciences, 1995.*

Simulation Modeling within workflow Technology, J. A.
Miller et. al. ACM Digital Library Winter Simulation Con-
ference, Dec. 1995.*

Workflow Handbook 1997, P. Lawrence, Nov. 1996.*

A Framework for Dynamic Changes in Workflow Manage-
ment Systems, M. Reichert et al., Sep. 1997.*

The Dependency Manager: a base service for transactional
workflow management, R. Gunmor IBM, Germany Feb.
1996.*

“Type On Call User’s Guide”, Adobe Systems Incorporated,
Mountain View, CA, pp. 5-13, 1996.

Borning, “Thingl.ab—A Constraint—Oriented Simulation
Laboratory”, Xerox, Palo Alto Research Center, SSL-79-3,
Jul. 1979.

“Serius Programmer Users Guide” (Introduction and Tuto-
rial only), Serius Corporation, Salt Lake City, UT, 1992.

“Getting Started” document accompanying “IBM Visu-
alAge for Java”, Chapters 3, 4, and 5 of Tutorial, Second
Edition, IBM Canada Ltd. Laboratory, Aug. 1998, 46pp.
Ingalls et al., “Fabrik, A Visual Programming Environment”,
OOPSLA 88 Proceedings, Sep. 25-30, 1988, pp. 176-190.
Frank Ludolph et al., “The Fabrik Programming Environ-
ment”, 1988 IEEE.

Brad J. Cox, Ph.D., “Planning the Software Industrial Revo-
lution The Impact of Object—Oriented Technologies”, IEEE
Software Magazine, Nov. 1990.

Borning, et al., “Constraint Hierarchies and Their Applica-
tions,” IEEE COMPCON Spring *91, pp. 388-393, Mar. 1,
1991.*

Freeman—Benson, et al., “The Design and Implementation
of Kaleidoscope *90, A Constraint Imperative Programming
Language,” IEEE Proc. of the *92 Int. Conf. on Comp.
Langs., pp. 174-180, Apr. 23, 1992.*

Designing Object—Oriented User Interfaces Dave Collins,
Jan. 1995.*

Microsoft Visual C++ Reference Library I, Class Library
Reference for Micrsoft Foundation Class Library version
1.0, 1993.*

Object—Oriented Information Systems Planning and Imple-
mentation David Taylor, Apr. 1992.*

* cited by examiner

U.S. Patent Aug. 7, 2001 Sheet 1 of 77 US 6,272,672 Bl

File

FIG. 1

init

U.S. Patent Aug. 7, 2001 Sheet 2 of 77 US 6,272,672 Bl

©

FIG. 2

FIG. 3

US 6,272,672 B1

Sheet 3 of 77

Aug. 7, 2001

U.S. Patent

¥ Old

Joalgo Jayjo Jo o_>_4/

Joslgo ejep jo ajpuey

saouaJaal Jusuodwod Jo 198~ |

]9S }Soy JO ajpueH

slied aoualajal JO 19S|e—

189S Juapuadap Jo 9|pueH

JBUMO JO a|pueH

Jied aouaiayel Jo INJ«

Jaysinbunsip uoai Jo sjpueH

UoN923||09 UodI Jo uodfj« |

Jaysinbunsip 1xa} jo s|pueH

+— JjoddeIp\—

palqo bums)

lapeay J03lq0

109[qo moi4

U.S. Patent Aug. 7, 2001 Sheet 4 of 77 US 6,272,672 Bl

.
»*
.
»
.®
.
o
o
L
.
Py
o
o®
s
.
.
®

......

.......
.........

............. . USER
E — projection —» observing
S user interface
Data ...
(inflow Tt
object)

A Region in
User Interface
(usually a child window)

FIG. 5

U.S. Patent Aug. 7, 2001 Sheet 5 of 77 US 6,272,672 Bl

C:
A: X
A
c: notify -
dependents - a: notify E:
b: ownerbe ~ OWner .- - :
. notified " d, e dependent y
Components % % ___ .«;"_ _ . _Denotified
Flow Objects S
Wy 3 ‘
Owner: A - [owner:B

X: |Dependents: C, p| » Dependents: E

FIG. 6

U.S. Patent Aug. 7, 2001 Sheet 6 of 77 US 6,272,672 Bl

= (untitled| v | ~
x JY z

z

FIG. 7

U.S. Patent Aug. 7, 2001 Sheet 7 of 77 US 6,272,672 Bl

: Coll | Win |— Pick

Pal
ntry

FIG. 8

/F

TS:Y Coll | Sel

TS: X
TS: Z

U.S. Patent Aug. 7, 2001 Sheet 8 of 77 US 6,272,672 Bl

Coll Sel I Entry
FIG. 9

TS: Z

U.S. Patent Aug. 7, 2001 Sheet 9 of 77 US 6,272,672 Bl

Dependent Set of Z
Component Sink
Text Entry 1 Sink 1

FIG. 10

Dependent Set of Y
Component Sink
Text Entry 1 Sink 1

FIG. 11

U.S. Patent Aug. 7, 2001 Sheet 10 of 77 US 6,272,672 Bl

FIG. 12

FIG. 13

U.S. Patent

flow

—

This
sink
connector

Aug. 7, 2001

Sheet 11 of 77 US 6,272,672 B1

Qutside

Inside

same wire

corres-
ponds
to

connector
component

N flow

Composite component

FIG. 14

U.S. Patent Aug. 7, 2001 Sheet 12 of 77 US 6,272,672 Bl

Qutside
Inside |
»5ame wireg 4
)ﬂow
,..'
flow
This corres-
source onds This
connector P o cource
component l connector

Composite component

FIG. 15

U.S. Patent Aug. 7, 2001 Sheet 13 of 77 US 6,272,672 Bl

FIG. 16

U.S. Patent Aug. 7, 2001 Sheet 14 of 77 US 6,272,672 Bl

N o

Out

*X Input
SomeComposite

FIG. 17

U.S. Patent Aug. 7, 2001 Sheet 15 of 77 US 6,272,672 Bl

FIG. 18

FIG. 19

FIG. 20

U.S. Patent Aug. 7, 2001 Sheet 16 of 77 US 6,272,672 Bl

FIG. 21

FIG. 22

o
ik

FIG. 23

U.S. Patent Aug. 7, 2001 Sheet 17 of 77 US 6,272,672 Bl

FIG. 24
Pl +
i
i
FIG. 25

FIG. 26

U.S. Patent Aug. 7, 2001 Sheet 18 of 77 US 6,272,672 Bl

N~ g %
N .
% S =
o T
+ | |+
|
[11;
=
]
e

U.S. Patent Aug. 7, 2001 Sheet 19 of 77 US 6,272,672 Bl

o
=

CY Button FIG. 30

U.S. Patent Aug. 7, 2001 Sheet 20 of 77 US 6,272,672 Bl

W PEF

FIG. 33

Laber P

FIG. 34

@I Sething }}

FIG. 35

U.S. Patent

s Dol f

FIG. 36

Aug. 7, 2001

Sheet 21 of 77

Menu

o EEm

Kaluun

FIG. 37

+Dolt

US 6,272,672 B1

FIG. 38

U.S. Patent Aug. 7, 2001 Sheet 22 of 77 US 6,272,672 Bl

!

FIG. 39

A RO]
(2

FIG. 40

FIG. 41

U.S. Patent Aug. 7, 2001 Sheet 23 of 77 US 6,272,672 Bl
(2

FIG. 42

FIG. 43

U.S. Patent Aug. 7, 2001 Sheet 24 of 77 US 6,272,672 Bl

FIG. 45

F‘_File Hfavigjatc IS .

U.S. Patent Aug. 7, 2001 Sheet 25 of 77 US 6,272,672 Bl

| Filefed

FIG. 46

U.S. Patent Aug. 7, 2001 Sheet 26 of 77 US 6,272,672 Bl

FIG. 48

FIG. 49

US 6,272,672 B1

Sheet 27 of 77

Aug. 7, 2001

U.S. Patent

0g ©Id

90USI9ISI g
9PISINO O

Aeire v SPTSUT N
2IN3oniIas IDTITPOou
OITM M

Jusuodwooqns §

90IN0S ¥

(Jusuodwoo) oaTiTWTId g
(Jusuodwoo) s3Tsodwod K
JUTs M

andano n ueiboad o
odA1 I Jusuoduiod 9
SSeTO 3oofqo

SNTRA A
uotidrtIossp a

uotadTIOSSp

9TgeINO9XS
AzeaqTT
S0UR]SUT

°TqelTPS

B H A

uIoJ

SaWEN WNpUaIulaqg ul pasn sio)3e] Jo NUS

US 6,272,672 B1

Sheet 28 of 77

Aug. 7, 2001

U.S. Patent

A<D>>._vx*|]_ 1G 'Ol

<dM>« l_ _ <Valy1>x

<ansi> | <any> ll_ _l <anjeA Bunjess,

<dn1> <VA> <410> |_

<d44l1>.

<VAIMT>X <V4ST>X ||_
<UMT>. Il_

<VaM1> <v4ST>
— "0}9 <loineyaq abessaw do)ss> <)08lqo uonduosap yuIs>,
<ANLAT> | <aN1dT> —— <303[qo uonduosap 89Inos>, m

<VALdT> <vaixi>

<VOX>X <dweu adA)>

_|| <doualaal Alowaw welboids
<AN1I7> <dOl1O71> <410> <49X> <UOISI3A> <suolssiwiad> I_
<dlo7>

U.S. Patent

Outside Description

Inside Description

— FileDialog LCTD

r LCTOD

Aug. 7, 2001 Sheet 29 of 77

US 6,272,672 B1

permissions, version
XGF

| not used |
CTF

| "FileDialog" I

- LKTDA
(empty)

- LRTDA

Source Definition Object

B LMTND

LSFA
(to be defined)

LWDA
(to be defined)

FIG. 52

U.S. Patent Aug. 7, 2001 Sheet 30 of 77 US 6,272,672 Bl

PON-_20O0CONONDLWN-~IO

Subcomponent
SubdirectoriesFilter
SubfilesFilter
TextSource (lower left)
Register (left)

Register (right)
PickAtRun
IndexedCollector
ListBox (left)

ListBox (right)
TextSource (top)
IndirectSelector (left)
IndirectSelector (right)
ResizableWindow
WourceConnector

N N N L |

FIG. 63

U.S. Patent Aug. 7, 2001 Sheet 31 of 77 US 6,272,672 Bl

<
L)) « 1 I+ (ﬂl :;
=% | v -
o I)

m

i 7@ a

LL

=

initd |

U.S. Patent

Aug. 7, 2001 Sheet 32 of 77

US 6,272,672 B1

Internal Component

Sources

OCoOoO~NOOOILAWN-=O

KL WS i Q|
HLPWON-0

SubdirectoriesFilter
SubfilesFilter
TextSource (lower left)
Register (left)

Register (right)
PickAtRun
IndexedCollector
ListBox (left)

ListBox (right)
TextSource (top)
IndirectSelector (left)
IndirectSelector (right)
ResizableWindow
SourceConnector

%[\)[\)[\)-&-\-&-&O[\)N___\

FIG. 65

U.S. Patent

Aug. 7, 2001

Sheet 33 of 77

US 6,272,672 B1

No | <CTPF>, i.e., <type name> <VA> <LUD>

1 | SubdirectoriesFilter (1)

2 | SubfilesFilter ((2)

3 | TextSource (lower left) "o ((3))

4 | Register (left) ((4), (5,6))

5 | Register (right) ((7),(8))

6 |PickAtRun 0

7 | IndexedCollector ((9)

8 |ListBox (left) ((10))

9 | ListBox (right) ((11))
10 | TextSource (top) "File navigator" ((12))
11 | IndirectSelector (left) ((13),(14))
12 | IndirectSelector (right) ((15),(16))
13 | ResizableWindow ((17),0)
14 | SourceConnector 1

FIG. 56

U.S. Patent

Aug. 7, 2001 Sheet 34 of 77

US 6,272,672 B1

No | Terminal Component | Sink no
1 11 1
2 12 1
3 4 2
4 8 2
5 2 1
6 1 1
7 9 2
8 14 1
9 13 3

10 7 1

11 7 2

12 13 1

13 8 1

14 4 1

15 9 1

16 5 1

17 6 1

FIG. 57

U.S. Patent Aug. 7, 2001 Sheet 35 of 77 US 6,272,672 Bl

 FileDialog LCTD
permissions, version

= XGF
not used

- CTF ————
"FileDialog"

- LCTOD
LKTDA

(empty)

LRTDA
Source Definition Object

- LMTND
LSFA

(same as FIG. 56)

LWDA
11
12

Inside description | Outside description

w W h
_ e e et e DA N =R WD a2 NN LA NN -

-
o
OO OO ANN22O=2N00O DM

FIG. 58

U.S. Patent Aug. 7, 2001 Sheet 36 of 77 US 6,272,672 Bl

FIG. 59

Contents

FileDialog

U.S. Patent Aug. 7, 2001 Sheet 37 of 77 US 6,272,672 Bl

No | <CTF>, i.e., <type name> <VA> <LUD>
1 | ResizableWindow (2),)
2 | PickAtRun 0
3 | TextSource "Contents" | ((1))
4 | FileDialog (3
5 | FielContentsFilter ((4))
6 | GenericPort ((9)
FIG. 60

No | Terminal component | Sink no

1 1 1

2 2 1

3 5 1

4 6 1

5 1 3

FIG. 61

U.S. Patent Aug. 7, 2001 Sheet 38 of 77 US 6,272,672 Bl

- (anonymous) LCTD

permissions, version
XGF

‘ not used |
CTF

[(empty)

- LCTOD

LKTDA
(empty)

LRTDA
(empty)

—LMTND

" LSFA -

1: ResizableWindow ((2),0)
2: PickAtRun

3: TextSource "Contents" ((1))
4: FileDialog ((3)
5: FileContentsFilter (4))
6: GenericPort ((5))

Inside description | Outside description

RN
- OOOITN =
Q) = = =

FIG. 62

US 6,272,672 B1

Sheet 39 of 77

Aug. 7, 2001

U.S. Patent

€9 Old

HO4Ue9 71 T4U0DANT €} UU0DSAIN0S ¢ | oSIPUL L L IST 101

I0DPUL:6'BaY 8 SIANS 2 IPANS:9'SlI4:S O L' HOId € ZIS9N:Z UOUE: | HodouauRY | Le
1JUODL|IH4. €L UUONHBDIIN0S:ZL 19SJIPU] L LISIT-0
00PUL:EBM:E oINS, APNG 'Sl S DO ol o zison 7 lovery| IPHISIUBII008IS | 0Z
UUuoONa2IN0Q:ZL '1Ie<lipul:L L1SIT:
oouc“Qmmm_m.m_%:mK.L__B:m_@.m__“_“w.ﬁxmhmv_w_rn___%N_mm_mwwrw&%w ioppauuegsaInos | 6l
(pabueyoun)| mopuippa|qezisay | 81
(pabueyoun) T RETEINRENTII] Ll
oQlIpUl L L1SIT:
00PUL:6 BoY E'OINANG:/ JPNS 0'BlL s POL T 0Id aser oue | JORRIeSRIPUI | oL
(psbueyoun) =R ISEE Gl
(pebueyoun) xogjsi 14
SIT0F
|0DPUI:6'BaY:8'a1IANS 2 IIPANS 9'AlI4 G XL HOId € 'ZISaN g Uoue: | xogisn | €l
l0DpU|:6'6ay:8"a]gNS 2 IPANS:9'alId:G a1 M0Id e ‘Zisay:z'uoue: || 10Jod|j0Opaxapul | 21
(pabueyoun) unyIvid Ll
(psbueyoun) Ja)sibay 0l
oy 8"9ILqNS: 2 IIPANS 99]1d:G XO L HOId € ZISay 'g UOUE: | 1B)sibey | 6
(psbueyoun) 921noSIxXa | o)
3IJANS:ZIIPANSI99)I4 G X L ¥ H0ld € ZISay ‘g UoUe: | Bdseuans | 2
1IPANS:9'all4 G IXd L Yold € ‘ZIsay g uoue: | [1a)jI{salojaupans | 9
all4:G X8 :yHHoId € ZISay 'z Uoue: | Bojeigald | S
X217 0ld € ZISay Z 'uoue:| aoInogxal | ¥
¥old € ZISay 'z Uoue: | ungiv¥old | €
ZIS9y:Z‘UouB:L| MOpUIpB|IqezISay | ¢
UOUE:|, uoue| |
<VOX> ()d jo JuswnbBay

U.S. Patent Aug. 7, 2001 Sheet 40 of 77 US 6,272,672 Bl

Element

top-level anonymous type
ResizableWindow
PickAtRun
TextSource
FileDialog
SubdirectoriesFilter
SubfilesFilter
Register
ndexedCollector
_istBox
ndirectSelector
SourceConnector
FileContentsFilter
GenericPort

OCoO~NOOTA WN =0

-
o

—
—

—_ =
HDWON

FIG. 64

U.S. Patent Aug. 7, 2001 Sheet 41 of 77 US 6,272,672 Bl

- (anonymous) XCTD

permissions, version

= XGF
<XGA> memory reference

- CTF
(empty), 1

-LCTOD

LKTDA
(empty)

LRTDA
(empty)

| Outside description |

-LMTND
- LSFA
1: (ResizableWindow,2) (2),0)
2: (PickAtRun,3) §]

3: (TextSource,4) "Contents" ((1))
4: (FileDialog,5) ((3))
5. (FileContentsFilter,13) ((4))
6. (GenericPort,14) ((5))

Inside description

r LWDA =———q

AT
= OOIN =
Q) = =k k-

FIG. 65

U.S. Patent Aug. 7, 2001 Sheet 42 of 77 US 6,272,672 Bl

- FileDialog XCTD
permissions
- XGF CTF
<XGA> memory reference ["FileDiang",S
-LCTOD
LKTDA LRTDA
| (empty) ‘ Source Definition Object
— | r LMTND
S | [r LSFA LWDA
B ||| 1 (SubdirectoriesFilter,6) @y |[|xr1 1
5 ||| 2: (SubfilesFiter,7) @ [|%12 1
9 3: (TextSource,4) "c:" ((3)) 3: 4 2
g ||| 4 (Register,8) ((4),(5,6)) g: g ?
5 5: (Register,8) ((7).(8)) 6 1 1
£ 11| 6: (PickAtRun,3) 0 :
7: (IndexedCollector,9) (9) 7: 9 2
8: (ListBox,10) ((10)) g:]g 1
9: (ListBox,10) ((11) 10- 3
10: (TextSource,4) "File Navigator" ((12)) 0_' ! !
11: (IndirectSelector,11) ((13),(14)) 1; _,’|' 2
12: (IndirectSelector,11) ((15),(16)) 13 3 1
13: (ResizableWindow,2) ((17),0) 131 8 1
14: (SourceConnector,12) 1 12: g 1
16: 5 1
17: 6 1

FIG. 66

U.S. Patent Aug. 7, 2001 Sheet 43 of 77 US 6,272,672 Bl

L(anonymous)

—]

]
2
3
4
5

o] ~
> ResizableWin

Subdir.Filter
prim. inside

prim. inside

> PickAtRun
prim. inside

———>|SubfilesFilter
prim. inside

TextSource Roqiol
Iprim. inside I cgister
>{FileDialos prim. inside
1 ——llndexedCollector
2 prim. inside
i ListBox
5 prim. inside
6 IndirectSelector
g | prim. inside
9 I —|SourceConnector
]? | prim. inside
12 I S FileContentsFilter
13 I prim. inside

14
w GenericPort
FIG. 67 Iprim. inside I

US 6,272,672 B1

Sheet 44 of 77

Aug. 7, 2001

U.S. Patent

<NWI> | <NdI>

89 OlId

<VOI>X,

<abelio)s aouejsul apisul aARwLd>

<NJI> <OJI>

— <dbeio)s moyj 10alqo s01nos>,

<abelojs moy 10alqo yuis>,

<VHI> <WHI> <VYOI>X <YVOX>X

<V9O|> <)sl| uonoe-buipuads

<JI>«

<9|>

U.S. Patent Aug. 7, 2001 Sheet 45 of 77 US 6,272,672 Bl

No | Element
1 | top-level anonymous type
2 | ResizableWindow
3 | PickAtRun
4 | TextSource
5 | FileDialog
6 | SubdirectoriesFilter
7 | SubfilesFilter
8 | Register
9 | IndexedCollector
10 | ListBox
11 | IndirectSelector
12 | SourceConnector
13 | FileContentsFilter
14 | GenericPort

FIG. 69

US 6,272,672 B1

Sheet 46 of 77

Aug. 7, 2001

U.S. Patent

04 Old

JI04OISUSS TZ NHIU0DBNF-0¢ UU0QS0IN0S 61 21509 8 HOSIPUI LT TOSIIPUIS) TOLG | X017 XOGsI 1.6}

NOOXPUI:ZLHOId: L L 1e)siBoy 01 IesIBay:6 e 8 'so|uang: 2 NIpang g BoleIgalid:S Xa L ¥ H0Id:€ 'ZIsey Z'uoue: L | (L vL)|
NI4U0D3|14:02 UU0DS0IN0S: 6| ‘ZISSY G LISSIIPU: L L ‘|9SJIPUI:Q} XD 1 G | ‘XogIsIT:p L ‘XogisIT:g)
1100Xpul:ZL NoId: | L '48)siBay:0 L eisiBay 6 @ 8 seluans: 2 1pang: g Bojeligald g el p oId g Zised:z uoue:L | (L'g)]
UU0QS2IN0S 61 ‘ZISSY 8 LI9SIIPU: L1 [9SIIPUI:9L X816 L 'X0g)ISIT:p L ‘XOog)sIT:E)
N0OXpul:ZE Yol L L 'Js)siBay 0| eisiBay: 6 o L 8'se|ugns: 2 1Ipgns g BoleIge|Id: ‘IXa L ¥old € ZISey:Z Uoue: | | (G'Z L))
Z|S9Y:81 ‘|9SHpUl: /L |8SIIPUL:QL IXOL:G L XOQISIT:b) ‘XOgIsIT:E L
TI0OXpUl:ZLYoId: L L Is)siBay 01 JeysiBey: 6 e 1.8 seluans: / ipgns:g‘Bojeige)id:s Ixal :p ¥oId g ‘ZIsey :Z uoue:L | (5°2)]
[OSJIPUL: L [OSIIpUL:9L X8 LS L 'XogisIT:vL ‘XOgIsIT:E L
I0OXPUL:ZL%0Id: | | 'I8)siBay 01 JeisiBay 6 o 1 :8'sa|uans: /. 1Ipans g Bojeige|id s IXe L b oId ¢ Zisay :Z uoue: | | ('L L))
[9SJIPUL:9L XL G L 'XOGISIT:¥ L XogISIT:E L
I00Xpul:gL Yoid:1 L J8)siBay 01 JejsiBay:6xe | ;g seluqng: L upang:g‘Bolelgali4:§ xal poId g 'Z1say iz uoue: L | (5L 1)
X21:G1'X0ogisIT:pL xogisI el
IoOXpulZLNoId: | L 118188y 0| ‘Jo)siBey 6 ‘IXa 1 :8'Sa|)anS: 2 NIpgng 9’ Bojeiasli4:§ Xo L b Hold € 'ZISoy:Z‘ UouE: L | (5'P)|
xogisi:yLxogisInel
I0OXPUIZL YId: L L '8sIBay 01 JeisiBoy:61xa 1 :g'S|UanS: 2 IIpanS:9 ' BolBIgald:S IXa L b)0Id € 'ZISeM :Z Uoue: L | (§'0L)]
xogisI:gl
1I00XPUI:ZL YOI | | '18)siBay: 0} us)siBay:6Ixa1 :8'SallaNS: L Ipqng 9 BojeIgeli4:§ IXa L v Hold € ‘ZISay :Z 'Uoue: L | (‘01|
I0OXPuI:Z L YoId:| L ‘J8isIBay 01 J8)sIBay:6 X8 L:8'Sallang: 2 ipgng:9'Bojelga|id s X8 L oid ¢ ‘Zisey:z'uoue: L | (56|
¥old: | L 8s1Bay 0 Je)siboy:6Ixa] :8'se|ugnS: 2 MIpans 9 ‘Bojeigelid:s xa L Yold g ZIsey :z uoue:L | (g'e)]
Jaysibay:0) JeysiBay:6Ixe 1 :8'S|uaNS: 2 IpaAng:g'Boleige|id:s Xa L v YMold g 'ZIsey :z'uoue: L | (g'g)]
Jeisibay 6 X8 1 '8's8|qNS: 2 NIpang:g'Bolelgeli4:g X8 - Hold g ‘ZIsey :Z'uoue:L | (g'g)]
Xa1:8's3jliqng:/ Npgng:g'BoleIgs|I4:6 X L b Hold g 'ZISay:Z‘UoUE: L | (§'P)
s9|yans:.1Ipgng:g'Bojelgali4:6IXa Ly NoId e ‘zIsoy :z‘uoue:) | (5°2)|
lpgng:g‘Bojelgad:gIxa Ly ¥oid g zIsey:z'uoue: | | (g'g)|
Boleigal4:sxal:pMoId ' zIsay z'uoue:L | (L'G)
oLy Woldg'zisey:z'uoue:L| (L'p)
Yold:g'zissy:g'uoue:L | (L'e)
Z1s9y.Z'uoue:} (L'
uoue:| (L)
<VYoI> (s

US 6,272,672 B1

Sheet 47 of 77

Aug. 7, 2001

U.S. Patent

WS
d Hodousuan l 1z
d | Jsy4susjuodaliy L | 02
d J0J03UU0D3IIN0S G 6l
d [mopuineiqezisay S |8l
d JojosjesioalIpu| G Ll
d 10]99]9g108.1pUY| G | 9l
d 90Inogxa] G | Gl
d xogjsi] S | vl
d xogisi g €l
d 10j93]j0Qpaxapu| G |2l
d unyIwold G L
d 19)sibay g 0l
d 19]siboy G 6
d 92JN0QIXa | G 3
d 19)|14s9juqns G .
d | J18)14sou0j0a1pans S |9
6L8L'ZLOL'SL'PL'EL'ZL'LL'OL'6'8°LD Bojeigai4 | G
d 92JN0QIXa | I b
d unyIvId P
d | MmopuipnalgezIsay 1l | 2
12°'02's'v'e'2 snowAuoue ||
(d) sApiwnd 10 sjusuodwooqng adA] | 1edng| oN

U.S. Patent Aug. 7, 2001 Sheet 48 of 77 US 6,272,672 Bl
- (anonymous) IC

- ICO

type x<XGA> =1
supercomponent x<IlGA> = nil

KA
(empty)

IRA
(empty)

ICN

FIG. 72

U.S. Patent Aug. 7, 2001 Sheet 49 of 77 US 6,272,672 Bl

- FileDialog IC

- 1CO

type x<XGA>=5
supercomponent x<XGA> = 1

- IKA
(empty)

- IRA

source object flow storage

ICN

CONIOION LN -

FIG. 73

U.S. Patent Aug. 7, 2001 Sheet 50 of 77 US 6,272,672 Bl

<XGA> (see Fig. 67): <IGA>:
(anonymous) |« 1
1
(6 6
ResizableWindow [« b
/
; — |
PickAtRun] 1

TextSource

FileDialog

14
14
Subdir.Filter
SubfilesFilter
Register
IndexedCollector
ListBox

IndirectSelector

IR

SourceConnector

FileContentsFilter

‘“AHAM[H‘“?

\

GenericPort

FIG. 74

US 6,272,672 B1

Sheet 51 of 77

Aug. 7, 2001

U.S. Patent

Hing Buisq Em._moa jo1INn

wesboid e

Buiuunu Jasn

q

$9)€JS JOB UOIIB2IUNWIWOoD
Buimoys weiboid ybnoay) sdays
SumEEm\soc EEmEn_

..._._......

weiboud Buiuuni e

mc_mmzaw._u Josn m

mmc_umm elep >>o=
MOUSs s10joadsul Emcanoﬁ

weibelp Buim .w

Bunipaio
m:_c_mea._wm:

sweibelp mc:_>>

a0edsyIOM |00} AIQUIDSSE 101N

G.L 9ld
<Jl>
aoue)sul <OI> 151] uonoe-Buipuad
< 8:@ m:
Jusuodwod Jsul ‘loJju092 aouanbas weliboud
weibol
yoeg d
ejep weiboid ypum 0yl
sweibeip BupA
<@Llox> <VOX> Aele
onduosap weuboud ﬁloau m:h_w_ﬂ&ww P <« Aeigr
adA} yoeg % a|gelnoaxy

U.S. Patent Aug. 7, 2001 Sheet 52 of 77 US 6,272,672 Bl
u

FIG. 76

FIG. 77

US 6,272,672 B1

Sheet 53 of 77

Aug. 7, 2001

U.S. Patent

(ge'eLe)

¢ (2o

SjuauoD

€

(€'9G1)

mo:

Bojeigai4

=l

14

(zs'y)

U.S. Patent Aug. 7, 2001 Sheet 54 of 77 US 6,272,672 Bl

- (@anonymous) XCTD
permissions, version

- XGF
<XGA> memory reference

- CTF
(empty),1

I LCTOD
LKTDA
(empty)
LRTDA
(empty)

- LMTND

r LSPA — = t—<VA> <LUD> <E5D>
1. (ResizableWindow,2) ((2),0)(272,24)
2: (PickAtRun,3) 0 (373,35)
3. (TextSource,4) "Contents" ((1)) 156,3)

4: (FileDialog,5) ((3)) (4,52)

5. (FileContentsFilter,13) ((4)) (109,52)
6. (GenericPort,14) ((5)) (184,42)

- LWDA
X<LSFA> x<LKTDA><EWD>

: 0

0

0

0

0

QABWON-
= MO NN =
G =

- ETD

<type graphic>
<graphic region>
(type help>

FIG. 79

U.S. Patent Aug. 7, 2001 Sheet 55 of 77 US 6,272,672 Bl

Transaction Object

Current
Object

Copy made Inst. variables
when Transaction copied back only
Object is instantiated when confirmed

FIG. 80

— O pen+—
~—Confirm+«
— Abort «—

FIG. 81

U.S. Patent Aug. 7, 2001 Sheet 56 of 77 US 6,272,672 Bl

-
=1
(-
- N
=
-
512
AN
0
' 3 O
q-l o I R L
T
|
113 hbo
i —— : 1]
T -HT
M
+ | i-*#’l'[ljl

U.S. Patent Aug. 7, 2001 Sheet 57 of 77 US 6,272,672 Bl

— Open «

(e Save
5 Close «

—Hevert—
FIG. 83

U.S. Patent Aug. 7, 2001 Sheet 58 of 77 US 6,272,672 Bl

Input
Flow
Object

US 6,272,672 B1

Sheet 59 of 77

Aug. 7, 2001

U.S. Patent

18 'Ol
m (]
iLs _.._w. s ESERETN R (6
L& =] as07 =8
(= aABRC =[]
=1— uadg =3
=iE (] 2)ld
Uled
juswiNooQ
i
NUB 314 O] == uadp] i Jojoalold Bojeiq

uado 9Ji4 psepuels

US 6,272,672 B1

Sheet 60 of 77

Aug. 7, 2001

U.S. Patent

88 'Ol

! LR

—Hiogqy — yled Juswnoo(
=uuo =

|nw|vcm_nE.|“,@|
i R=m

1oj09loid Bojeiq

usdQ 8Ji4 psepuels

—

US 6,272,672 B1

Sheet 61 of 77

Aug. 7, 2001

U.S. Patent

N

U.S. Patent Aug. 7, 2001 Sheet 62 of 77 US 6,272,672 Bl

)

FIG. 93

zelect [draw draw text
h: R) B A
tonal tool taal tool

FIG. 94

US 6,272,672 B1

Sheet 63 of 77

Aug. 7, 2001

U.S. Patent

g6 Old

@}

M D-Jp

@0}

Mo-Jp

@o}

RITEE

US 6,272,672 Bl

Sheet 64 of 77

Aug. 7, 2001

U.S. Patent

MOPUIAA PIIYD

96 'Ol

sauinbu| snjejs
sabessa Aejdsig

SJUSAT Jasn

aajoaloid

Ow
> =
25
Q =
D S
»

ainjonis
[enu|

eled
Aejdsiq

10103loid

U.S. Patent Aug. 7, 2001 Sheet 65 of 77 US 6,272,672 Bl

FIG. 97

US 6,272,672 B1

Sheet 66 of 77

Aug. 7, 2001

U.S. Patent

90IN0g
Hod

ol

jul
23)93(0id

00l "9Id
90.N0g
BleQ
Joyoaloid
\ NUIS
00
- -
¥ JUIS wo‘_:ow_‘ i WUIS
aouejsul J0303loid Sse|D
Joyoaloud
92.n0g
puUBLIWO)
Joyoaloud

US 6,272,672 B1

Sheet 67 of 77

Aug. 7, 2001

U.S. Patent

224nos
0}
Hod

10l "OId

44— MOPUIM PIIYD

L

-—

sauinbu) snielg

4l sobessa Aeidsiq

SJUDAT J9SN

uis
29)08l0ud —— 1!

:

sabueyn

ainonng

ainpnis
[eniu|

-

eleq

feidsiq | fe— hmﬂ

Jojoaloud

X

1001
_

|00} - OIS

US 6,272,672 B1

Sheet 68 of 77

Aug. 7, 2001

U.S. Patent

o

¢0l "Old

IR

lllllllllllll

— €

Yl

EE

f% ;f%{: :f% v
(- — L

U.S. Patent Aug. 7, 2001 Sheet 69 of 77 US 6,272,672 Bl

L

FIG. 103

M- 1

FIG. 104

% <=1

FIG. 105

L F

FIG. 106

U.S. Patent Aug. 7, 2001 Sheet 70 of 77 US 6,272,672 Bl

I
—_

¥ <

FIG. 107

FIG. 108

U.S. Patent Aug. 7, 2001 Sheet 71 of 77 US 6,272,672 Bl

FIG. 109

pt
ol

Factaonal
L
A

U.S. Patent Aug. 7, 2001 Sheet 72 of 77 US 6,272,672 Bl

Cond

=)
O

=)

=)

=)

FIG. 110

==
=)

I

US 6,272,672 B1

Sheet 73 of 77

Aug. 7, 2001

U.S. Patent

s19sM
pu3g

1I)Jep
weiboid
uonesiddy

LLl Ol

S199onpo.d
Jusuodwon
aysodwon

\

joNiepN
jJuauodwon

Slaonpold
Jusuodwo)
SAljILILY

s$Jaonpoid
001

US 6,272,672 B1

Sheet 74 of 77

Aug. 7, 2001

U.S. Patent

Ll 9Old
< Jabeoed
LLLIOJ uoneol|ddy
9|qeInoaxa
ul
abeyoed
Japodx3g Jayoduw|
- adA] |-+ Areiqi] usuodwon adAl |-
ULio} uauodwod usuodwo? LLIO}
abueyoiayui abueyoliaul
ul ul
. (wJoj 7 03) (wuoy X 03 7) .
Hodx3 a)e|nsdeou]y Adon poduw
aoedSHIOAA BULIIA
|00] Alquiassy

the component type from the library into the;
tool's wiring workspace any number of
times, and to wire these references.

U.S. Patent Aug. 7, 2001 Sheet 75 of 77 US 6,272,672 Bl

Aspect Prerequisite | Remarks

Advertisement or Application Note. None Does not require assembly tool;

Any number percomponent type might accompany component

Application License (AL) None Anend-use license which exists

License to execute but not distribute only for packaged applications.

packaged form of component type. User does not require assembly tool.

Help License (HL) None As a practical matter, producer might

A license to view/run the help facility wish to grantaccess to everyone

associated with the component type in posession of component type.

and with each outside connector.

Running License (RL}) Ifcomposite, | Permits use ofcomponent types

License to instantiate and run RLforallsub- | containing this type as a subcomponent,

components of this type as components | without conferring the right directly to

subcomponents within the assembly tool. manipulate it in the workspace. Required
forencapsulation ofa wiring diagram
containing references to this type.

Wiring License (WL) Ifcomposite, | Permits the user to create wiring diagrams

is addition to the rights of RL, a RLforallsub- |incorporating references to this com-

license to copya reference to components | ponent type.

Opening License (OL) WL Each immediate subcomponent type

Alicense to view the inside of the com- reference is shown but is openable

ponent type within the assembly tool. onlyifits type's OL is present. Opened
fype's wiring diagram is not modifiable
without DL

Packaging License (PL) RL Ifcompo- | Permits application developers to pro-

Alicense to package a freestandingapp- |site, PLforall | liferate and distribute component type in

lication containing any numberof referen- | subcomponents | freestanding form.

ces fo this component type.

Export License (EL) RL [fcompo- | Permits component producers to pro-

Alicense to export composite types site, EL forall | liferate and distribute component type as

containing this type as a subcomponent. | subcomponents. | a subcomponent ofa component type
description in interchange form.

Derivation License (DL) WL OL PL EL | DL grantee becomes producer of

Inaddition to the rights of OL a license to
modifythe inside of a component type

and to encapsulate the resulting wiring

a new type.

FIG. 113

US 6,272,672 B1

Sheet 76 of 77

Aug. 7, 2001

U.S. Patent

vil ©OIld
j Y
] _ R E——
........................ .—mt / .xm:...:.:....:.....................
13- adAL ebeoeq |00 Tt 1d
JuUsauod Eonx uonediddy
Y
Japoduw) 13onpoid
............ adAL Jusuodwion
THT m “ Jusuodwon T
1dm..mmamvto>> BuLipn
I—O
et < Jaonpolid
1 |oo] Alquiassy |00}
oy B
f(Jawnsuo) jusuodwon)

U.S. Patent Aug. 7, 2001 Sheet 77 of 77 US 6,272,672 Bl

FIG. 115

P3
T3

P1

=

US 6,272,672 Bl

1
DATAFLOW PROCESSING WITH EVENTS

BACKGROUND OF THE INVENTION

The invention relates to programs with graphical user
interfaces.

Graphical user interfaces typically employ graphical dis-
plays for output to the user and one or more devices for input
from the user, possibly including a keyboard and a pointing
device like a “mouse” with one or more buttons for signal-
ling the application program. The term “display-out event-
in” is used here to describe such user interfaces. The
emphasis of the present discussion is on reducing the
complexity with which the designers and builders of these
systems must deal.

The display-out event-in user interface was largely pio-
neered at Xerox Palo Alto Research Center (PARC). Many
of the ideas developed at PARC were embodied in the
Smalltalk and Alto systems developed there. The PARC
group used the term “modeless user interface” to mean,
among other ideas, that the interpretation of input events
depends on the position of the mouse pointer with respect to
the possibly several figures being displayed, and also on the
relative positions of these several figures with respect to
each other. Thus, in more recent systems descended from
Smalltalk and Alto, particularly in the Apple Macintosh and
the Microsoft Windows operating systems, characters typed
on the keyboard are interpreted as input to the “window™
figure which is the “top” of several possibly “overlapping”
windows, and a mouse-button depression is interpreted as
being “directed to” the visible figure, such as a “button,”
which is “under” (i.e., whose graphical region encloses the
position of) the mouse pointer. We assume that this context-
dependent character of event interpretation is present in the
display-out event-in user interfaces being discussed here.

Implementation of a data processing system employing a
display-out event-in user interface is complex and difficult,
being centered about a low-level “event loop” which is
continually sampling the input devices for input events.
Once an event is detected, a possibly quite complex decision
sequence is undertaken to discover the display figure with
respect to which this input event is to be interpreted. Once
this display figure is isolated, some form of signal is sent to
an entity, usually a software object or function, associated
with this display figure. This entity then interprets the event
in the context of the application program in whose service all
this machinery exists.

The design of a “user-interface management system”
(UIMS) consists, in part, of deciding what desirably maxi-
mum set of functions (such as the event-identification func-
tion described above) can be isolated from the application
program and packaged as a general set of services available
to all application programs, thus reducing the total complex-
ity of multiple application programs which use the UIMS.
Even with such UIMSs, the construction of application
programs with display-out event-in user interfaces remains
complex and difficult.

Many designers have employed two common strategies
for simplifying the structure and construction of application
programs. The first strategy is based on the observation that
the sequential aspects of programming contribute substan-
tially to the difficulty of the task. This first strategy consists
of finding a way to divide the structure of the program into
a sequential part and a static part in such a way that the
builder of the application program needs to pay minimal
attention to the sequential part. The second strategy consists
of finding a way to partition the remaining sequential part so

10

15

20

25

30

35

40

45

50

55

60

65

2

its subparts are typically simple and have minimal interac-
tion with each other.

The first simplification strategy is facilitated by dividing
the universe of applications into similarity-groups, such that
all the members of each similarity-group share a common
design for the sequential part. Then a “sequence engine”
common to all members of the similarity-group can be built
and used by all application program builders as the imple-
mentation of the common sequential part. The task of a
builder of an application from one of these similarity-groups
is ideally reduced to a static parameterization of the
sequence engine; the builder can largely ignore the internal
details of the sequence engine.

An historically important application of the first simpli-
fication strategy has been with respect to the similarity-
group of report-generation programs based on sequential
files. The strategy was employed in the design of the wiring
panels of nonstored-program punched-card tabulating
machines such as the IBM 407 (whose underlying sequential
“card cycle” is largely implicit in the wiring panel) and then
subsequently to the successors of the IBM 407, including the
RPG programming system for the IBM 1401 computer and
a long line of report-generator program successors to RPG.
All of these instances of the first simplification strategy
insulated the application program builder from the sequen-
tial details of the underlying record-processing cycle and
focused on the static formats of data in files and reports, with
the choice of alternative report formats based on data values.

Applications with display-out event-in user interfaces
form a similarity-group in the sense described above,
because they have in common the underlying event-loop
processing cycle. Attempts to exploit the first simplification
strategy with respect to the similarity-group of display-out
event-in programs (and thus to make construction of appli-
cation programs from this group a simpler, more static
process) have had some success.

The earliest well developed application of the first sim-
plification strategy to display-out event-in systems is the
Model-View-Controller (MVC) design paradigm developed
at PARC as part of the Smalltalk programming system. In
the MVC paradigm the application is divided into three
parts: the View part expresses display appearance, the Con-
troller part expresses event-identification behavior, and the
Model part expresses everything else, namely the “internal”
(i.e., non-user-interface) application logic, which communi-
cates with the user via the View and Controller parts. All
three parts are built using the Smalltalk language.
Importantly, the application program developer can largely
limit his/her attention to the Model part, since the View and
Controller parts are incorporated into the Smalltalk system.
(The sequence engine is hidden in the Controller part.)

Microsoft Visual Basic (VB) is a representative and
widely-used contemporary example of both simplification
strategies. In VB the structure of an application program is
organized into two major portions, which we can call Forms
and Procedures. Forms express the visual aspects of the user
interface and contain collections of “controls,” which are
specific visual features with specific behaviors, for example,
buttons. (It is an additional benefit of major practical
importance, although that benefit is not immediately rel-
evant to the present discussion, that the specification of
Forms in VB is entirely pictorial.)

VB is an application of the second simplification strategy
in that Procedures consist of many (typically) small modules
of code and, furthermore, that these modules are grouped by,
and logically associated with, the controls appearing in the

US 6,272,672 Bl

3

Forms. Each code module is dedicated to the handling of one
event which “originates” from its associated control. Thus
the design of VB assigns each code module uniquely to a
point in the space of ordered pairs (control, event). This
partitioning is an effective application of the second simpli-
fication strategy because there is typically little interaction
between these ordered pairs.

In the current art as widely practiced, sequential proce-
dure code has been largely removed from the specification
of the appearance of the display but remains in the specifi-
cation of the handling of events and in the specification of
application logic, namely those aspects of the design which,
in the MVC paradigm, are collectively called the Model. A
program constructed according to contemporary practice
consists of two quite distinct specification “layers:” a static
(and visual) Form layer and a Procedure layer containing a
collection of partially interacting code modules. There is in
such practice an undesirable conceptual and cognitive dis-
continuity between these two layers.

As distinct from the two-layer model described above,
Fabrik [D. Ingalls et al, “Fabrik: A Visual Programming
Environment,” Proceedings of OOPSLA (Conference on
Object-Oriented Programming Systems, Languages, and
Applications), September 1988] conceptualizes a display-
out event-in application program as a constraint network [A.
H. Borning, “Thingl.ab, a Constraint-Oriented Simulation
Laboratory,” Tech. Report SSL-79-3, Xerox Palo Alto
Research Center, July 1979]. This constraint network is
visualized as a set of components with connectors on their
edges. Wires can be drawn between the connectors. Typi-
cally of constraint-oriented specification models, the Fabrik
conceptual model is quasi-static and does not embody the
two-layer conceptual discontinuity described above. The
hidden sequence engine of Fabrik is in two parts. It consists
of the above-described sequence engine of the display-out
event-in user interface as contained in certain components
associated with user-interface events, plus a distributed
constraint-maintenance protocol associated with the set of
wires. The distributed constraint-maintenance protocol
assures that the dataflow values at both ends of each wire are
the same. The constraint-maintenance protocol is local (i.e.,
it deals only with the values at the two ends of each wire)
and it permits bidirectional flow along certain wires. As an
example of the practical consequence of the locality of
Fabrik’s constraint-maintenance protocol, the extended path
from a data value in a database component to its user-
interface display component must be fully bidirectional, in
order to manage the propagation of data changes which can
occur either in the database or at the user interface. This need
for full bidirectionality in extended data paths adds substan-
tial complexity to the task of building practical programs
and to the task of building components, particularly for the
majority of components which have more than two
connectors, because of the combinatorial growth of the
number of cases of change propagation which must be

handled.
SUMMARY

In general, in one aspect, the invention features a com-
puter software method in which references to a flow object
are flowed through a network of processing components,
and the processing components are enabled to have direct
access to a common version of the flow object for the
purpose of performing operations with respect to the flow
object.

Implementations of the invention may include one or
more of the following features.

20

25

30

35

40

45

50

55

60

65

4

The reference to the flow object may flow in only one
direction through the network. One of the operations may
include modification of the flow object. The flow object
reference may be used by a component to send a message
directly to the flow object. The flow object may use a
reference to a component to send a message directly to the
component. The flow object may have an owner component,
may contain a reference to its owner component, and may
use the reference to refer to its owner component. The flow
object may have one or more dependent components and
may contain references to refer to the one or more dependent
components. The reference may be used in message-passing
communication acts to keep the components synchronized in
their use of the flow object. The message-passing commu-
nication acts may occur in alternating patterns of messages,
component to flow object, flow object to component, and so
on. The message-passing communication acts may give
notice that a flow object has been operated on.

The processing of a component may project the flow
object onto an event driven user interface. Every displayed
element of the user interface may be a projection of a flow
object. The events may include key strokes and pointer
actions. The components may be hierarchical.

The flow object may include a reference to an object. The
object referred to in the flow object may be a not-pure-data
object. The not-pure-data object may include a process to be
executed, or a flow object, or a collection of flow objects. At
least one of the components may operate on the flow object
by means of a reference without flowing references to the
flow object through the network. A component which is
operating on a flow object may advise the flow object’s
owner component, by a message-passing communication
act, when the flow object has been operated on. The com-
ponent which is operating on the flow object may apply the
communication act to the flow object. The owner component
may advise dependent components, by message-passing
communication acts, when the flow object has been operated
on. Action on the advice to dependent components may be
blocked at the operating component.

At least some communication between components may
be achieved by flowing references to the flow object from a
serving component through the network including into
another component, and then having the other component
engage in message-passing communication acts directly
with the serving component. A component may generate and
operate on a derivative of the flow object without copying
the parts of the flow object, by using references to the parts
of the flow object. Components may be organized in types,
instances of which comprise the components of the network.

Flow objects may be organized in types, instances of
which comprise the flow objects the references to which
flow in the network. One of the flow object types may be a
type that has at least one MO instance. One of the flow
object types may represent a component type. Instances of
the flow object type may be spawned by an instance of one
of the component types. Instances of one of the component
types may invoke the component type represented by a flow
object instance. Flow objects may include any of Dolt, port,
dialog projector, component type description, tool, or child
window projector. A flow object may yield an identifier
which can be used to distinguish it from other flow objects,
e.g., a picture or text. The flow object may include a wrapper
which yields a value of the identifier, or yields component
references. A component may use the identifier in taking an
action, such as displaying of the identifier onto a user
interface, or a table lookup.

A component may include a persistent value, which may
be set when a network containing the component is encap-
sulated. The value may be changed either before or after
encapsulation.

US 6,272,672 Bl

5

In general, in another aspect, the invention features a
reusable component type comprising a template according to
which the component type may create component instances,
the template including information about external charac-
teristics of the type and about internal characteristics of the
type.

Implementations of the invention may include one or
more of the following. The internal characteristics may
include information about actions that may be taken by the
component instances, €.g., operating on a flow object, or
originating a flow from a source. The component instance
may contain or receive via a sink connector a representation
of a flow object type and the action may include creating an
instance of that type. The action may include the origination
of a message-passing communication act. The effect of the
action when a flow object referred to at a sink is MO may
be the same as if the flow-object reference in the sink were
invalid. The action may occur in response to receipt by the
component instance of an event or of a flow or a message-
passing communication act.

The internal characteristics may include the ability of the
component instances to respond to and to initiate flows and
message-passing communication acts. The external charac-
teristics may include the ability of the sinks of the compo-
nent instances to respond to invalidate sink connector and
receive flow messages. The component instances may
respond to owner be notified and dependent be notified
messages from flow objects, to stop, idle, and run messages,
and to event messages and to pick messages from Dolts of
which they are the server.

The external characteristics may also include a connector
type which acts as a template for creating connector
instances according to which the component instance com-
prises the connector instance, and the connector instance has
storage which holds a flow object reference. The flow object
reference may be valid or invalid, and, if invalid, does not
refer to a flow object and, if valid, refers to a flow object. The
connector type may include a sink type whose instances
receive references via connections from source connector
instances of components or a source type whose instances
send references via connections to source connector
instances of components.

The component type may include a mechanism for com-
municating with a flow object referred to. The component
type may be embodied in one data structure and the com-
ponent instance may be embodied in another data structure.
The component type data structure may be persistent and the
component instance data structure may be transient. The
component type may include a primitive component type.
The component type may include a composite component
type which contains a reference to a component type. Except
for the number of sink connector types and source connector
types comprised therein, the component type may be indis-
tinguishable in its external characteristics from other com-
ponent types. The boundaries of a composite component
instance may be hidden with respect to message-passing
communication acts.

In general, in another aspect, the invention features a
connector component type which includes expressions of the
functional relationship between internal network intercon-
nections of a composite component type and external con-
nections of a reference to the composite component type in
a manner that represents encapsulation of the internal net-
work interconnections whose only connections to the out-
side of the component type are through connector compo-
nent instances.

20

25

30

35

40

45

50

55

60

65

6

Implementations of the invention may include one or
more of the following. The connector component type may
include a sink connector component type, or a source
connector component type. The connector component type
may be configured to be effectively transparent to flows.

In general, in another aspect, the invention features an
indirect selector component type which creates a component
instance used in a network. The type includes a sink con-
nector for sinking a reference to a flow object which contains
a reference to a collection, and a source connector for
sourcing a reference to a selected collection flow object
which refers to the original collection and to a selection on
it.

Implementations of the invention may include one or
more of the following. The selection may include zero or any
number of elements of the collection. The collection may be
of flow objects. A source connector may source a reference
to a flow object which is either MO or is a selection from the
collection. The flow object may include MO when the
selected collection flow object refers to an empty selection
and otherwise may include the selection referred to by the
selected collection flow object. The selected collection flow
object may be sourced to a choose-one component. The
choose-one component may make an empty selection or a
selection comprising any number of elements of the collec-
tion. The choose-one component may include a user inter-
face element. The selection may be expressed in a modifi-
cation of the selected collection flow object. The indirect
selector component may be notified when the selected
component flow object is modified. The choose-one com-
ponent may display identifiers obtained from the elements of
the collection. The choose-one component may make a
selection based on an event received from the user interface.
The choose-one component may make a selection based on
the values of the identifiers obtained from the elements of
the collection.

In general, in another aspect, the invention features a
software application. In the software application, a program
array contains objects representing component type
descriptions, some component type descriptions of which
array may contain references to elements of the array and
information about interconnections between these refer-
ences. The application includes a network of component
instances derived from the elements of the program array,
including the interconnection information, and a single
projection mechanism sufficing to enable a user to edit,
debug, and run the application.

All of the elements of the program array may occur
uniquely. Each component type in the array may include a
set of command behaviors specific to the type of the com-
ponent. The activation of a command behavior may trigger
a behavior, e.g., any behavior of the kind that may be
triggered by the picking of a Dolt.

For editing, the elements of the program array may be
projected onto the user interface. A designator of each
command behavior may be projected onto the user interface
and may be selected for activation. For running, user-
interface components of the network may be projected onto
the user interface based on a program which includes
component instances, component type descriptions, and
information about pending processes. The information about
pending processes may include a processor stack, or a
pending-action list used to defer processing of component
instances having multiple sinks.

The application may be debugged while running, using
the single projection mechanism, by using information about

US 6,272,672 Bl

7

component types and their interconnections obtained from
the program array, and using component instance informa-
tion including flow object information and communication
act information obtained from the running program. Flow
object information may be projected onto the user interface
by means of flow object references in connectors. The
projection may be done by user-interface components. The
state of a component instance may be projected onto the user
interface. The state of the component instance may include
the values of settings and of flow objects referenced by the
component’s connectors.

For debugging, the information about message-passing
and flow communication acts may be projected onto the user
interface by visual modification of interconnections and
components in the network. The information may be pro-
jected a step at a time under control by a user. The debugging
may be single stepped by pausing the running of the program
after each of the message-passing or flow communication
acts. The projection mechanism may control editing and
running by sending stop, idle, and run messages to the
application which then sends these messages to the compo-
nent instances. The stop messages may invalidate the flow-
object references of all connectors. The message passing and
flow communication-act behavior of the application may
begin upon issuance of the idle message to component
instances, which precedes the start point of the application
at the time the run message issues.

For running, the stop-idle-run sequence may be sent all at
once. For editing and debugging, the stop-idle may be sent
together, and the run message may be sent when chosen by
a developer. Editing may be permitted after a stop-idle
sequence. Activation of command behavior may be permit-
ted after a stop-idle sequence. Adding a connection between
component type references during editing may force a flow
to occur in the running of the corresponding program.
Removing a connection between component type references
during editing may force an MO flow. Adding a component
type reference to the network may force creation of a
corresponding component instance.

In general, in another aspect, the invention features a
setting component type for use in a network of references to
component types, the setting component type comprising a
variable which can have a distinct value for each reference
to the setting component type.

Implementations of the invention may include one or
more of the following. Each instance of this reference to this
type is an owner of a flow object referencing a distinct copy
of this reference’s value and which sources a reference to
this flow object when the instance receives an idle message.
The value associated with each reference can be changed,
before a network of component instances corresponding to
the network containing this reference is encapsulated, by
means of the activation of a command behavior of the
component type. The value associated with each instance
can be changed by means of a transaction register compo-
nent.

In general, in another aspect, the invention features a
command component type for use in a network of references
to component types comprising a sink connector and a
setting.

Implementations of the invention may include the follow-
ing features. After a network in which it occurs is
encapsulated, the network may impart a command behavior
to the resulting composite component type such that the
designator of the command behavior is determined by the
setting. When the command behavior is activated, the

10

15

20

25

30

35

40

45

50

55

60

65

8

instance of the component type may cause a Dolt flow object
referenced by the sink connector of the instance to be
picked.

In general, in another aspect, the invention features a
method of handling control flow in a network of
components, in which a transaction register component
manages a transaction object, and flows and message-
passing communication acts to and from the transaction
register component are used to control actions on the trans-
action object.

Implementations of the invention may include the follow-
ing features. The transaction object may contain a current
object and a reference to an underlying object. The trans-
action object may receive an open message which creates a
current object which is a copy of the underlying object. The
transaction object may accept an abort message, which
destroys the transaction object, and a confirm message,
which first copies the instance variables of the current object
to the underlying object and then destroys the transaction
object. After the transaction object is created, the transaction
register component may source a reference to a flow object
which references the transaction object, the transaction
register component being the owner of that flow object. A
dialog component may sink a reference to the sourced flow
object and may open a dialog projecting onto the user
interface the instance variables of the current object of the
referenced transaction object and permitting changes which
the user makes to these variables in the user interface to be
effected directly in the respective instance variables of the
current object. The dialog component, upon receiving an
abort or confirm event from the user interface, may close the
dialog and cause the sending of an abort or confirm message
to the transaction object referenced by the flow object,
thereby changing the instance variables of the underlying
object only if the confirm message is received.

In general, in another aspect, the invention features a user
interface component type whose instances have a display-
out/event in behavior that is defined entirely by flow objects.

Implementations of the invention may include the follow-
ing. There may be a combination of component types. The
component instance may accept a flow object to be projected
onto the user interface, a projector class flow object, and a
tool flow object. The projector class flow object may define
the appearance of the display. The tool flow object may
define the response to user-interface events.

In general, in another aspect, the invention features an
item of commerce which includes a description of a com-
ponent type expressed in an interchange format permitting
the component type to be encapsulated hierarchically and
referred to within a network defining interrelationships of
component types, the component types being arranged to
permit references to flow objects to pass into and out of their
instances. In implementations of the invention, the compo-
nent type description may be stored in libraries.

In general, in another aspect, the invention features a
computer program comprising a component type. In imple-
mentations of the invention, the computer program may be
expressed in an interchange format, and may be in a form
capable of freestanding execution on a computer.

In general, in another aspect, the invention features an
assembly tool which enables a user to store component type
descriptions and to manipulate and interconnect references
to component type descriptions to form other component
type descriptions.

Implementations of the invention may include the follow-
ing features. The assembly tool may be adapted to run and

US 6,272,672 Bl

9

enable debugging for programs derived from component
types. The assembly tool may be arranged to allow genera-
tion of an application which is executable independently of
the assembly tool. The assembly tool may be arranged to
provide a graphical work space enabling a user to manipu-
late representations of component types to form other com-
ponent types. The assembly tool may be arranged to accept
component type descriptions in an interchange format, and
to export component type descriptions in an interchange
format. The component type may have aspects defining what
can be done with it and the assembly tool may include a
restriction mechanism that controls use of different aspects
by a holder of the component type.

In general, in another aspect, the invention features a type
description component type, an instance of which has a
setting whose value references a component type, and a
source connector which, when the instance receives an idle
message, sources a flow object representing the referenced
component type.

In general, in another aspect, the invention features a type
invocation component type, an instance of which includes a
sink, which accepts a flow object representing a component
type, a source which sources a Dolt, the type invocation
component instance being the Dolt’s server, and other sinks
and sources. In implementations of the invention, when the
Dolt is picked, an instance of the represented component
type may be created; a program based on the represented
component type and the instance may be built; stop and idle
messages may be sent to the program; inputs derived from
flows arriving at the additional sinks of the type invocation
component type may be flowed to the corresponding sinks of
the instance; a run message may be sent to the program; and
any flows sourced by connectors of the represented compo-
nent instance may be sent to the sinks which are connected
to those additional sources of the type invocation component
which correspond to the sources of the represented compo-
nent instance.

Other advantages and features will be demonstrated by
the following description and the claims.

DESCRIPTION

The invention employs a conceptually unified quasi-static
constraint-network model. The constraint-maintenance pro-
tocol employs only unidirectional dataflows, greatly simpli-
fying the design and construction of components, and it is
nonlocal.

The nonlocal property of the constraint-maintenance pro-
tocol eliminates the need for the application builder’s
explicit management of bidirectional consistency constraints
between related data in widely separated parts of the pro-
gram network. For example, the practical programming
issues associated with maintaining consistency among dif-
ferent displays of the same object value or among object
values in databases and multiple displays of these values
(even while any of these values might be caused to change)
are handled automatically by the nonlocal constraint-
maintenance protocol. The practical effect of this automatic
maintenance of data consistency across the whole program
network is the consequent greater conceptual simplicity of
the total design and construction task.

One measure of the power of a construction paradigm
which employs the simplification strategies discussed above
is whether a programming tool which implements such a
construction paradigm can be built using itself. With respect
to the similarity-group of display-out event-in systems, this
measure of power is rarely achieved. MVC exhibits this

20

25

30

35

40

45

50

55

60

65

10

power, but MVC is all code. Conceptual systems extensively
employing static description, such as VB and Fabrik for
example, have not been realized by tools whose internal
structures both are instances of these conceptual systems and
which can build themselves. The present invention can be
used to build a display-out event-in programming tool,
based on the invention, which can then build itself.

Table of Contents of Description

Figure List

1 Structure and Behavior of Programs

1.1 Structure of a Program

1.2 Flow Objects

1.3 Communication Acts

1.4 The Routing Communication-act Function

1.5 The Message-passing Communication-act Function
1.6 Interpretation of Flows; The Projection Paradigm
1.7 Interpretation of Picks

1.8 Events

1.9 Interpretation of Notify Owner and Notify Dependent
Communication Acts

1.10 Interpretation of Notify Hosts Communication Acts
2 Program Sequence Control

2.1 The Steady and Busy States of Applications
2.2 Sink State Change
2.3 Clear-before-send rule

2.4 An Example of Change Propagation
3 Composite Components

3.1 Primitive and Composite Components

3.2 Connector Components

3.3 Flows Into and Out of a Composite Component
3.4 Summary of Sink Behaviors

3.5 Structure of an Application Program
4 A Fundamental Set of Primitive Components

4.1 Settings

4.2 Collection Components
4.3 Window Components
4.4 Filter Components

4.5 Glue Components

4.6 An Analysis of a Wiring Diagram
5 Component Forms

5.1 Data Structure Definitions

5.2 The Component Forms

5.3 Definitions of Library Forms

5.4 Example of a Library Form

5.5 Definitions of Executable Forms

5.6 Example of an Executable Form

5.7 Definitions of Instance Forms

5.8 Example of an Instance Form

5.9 On the Distinction Between “Wiring Time” and “Run
Time”

5.10 Components Which Participate in the Development
Process

5.11 Definitions of Editable Forms

5.12 Example of an Editable Form

5.13 What the Wiring Workspace Does

Using Flow Objects for Control

6.1 Transactions

US 6,272,672 Bl

1
6.2 Dialog Projectors
6.3 An Example of Branching
6.4 Coupling Protocol
6.5 Component Invocation Components
6.6 Tools
6.7 Child Window Projectors
6.8 Example of Projection
7 Example of a Recursive Algorithm
7.1 Program Description vs. Algorithm Description
7.2 A Conditional Component
7.3 Computational Components

7.4 Bootstrapping Recursive Definitions
8 A Component Type Market Model

8.1 Component Type Interchange
8.2 Assembly Tool Structure

8.3 The Structure of Restriction
How The Use of Components Is Restricted

9.1 Licensing of Component-type Aspects
9.2 Forwarding of Licenses

FIGURE LIST

FIG. 1 is a diagram of an example program.

FIGS. 2 and 3 are diagrams of a source connector and a
sink connector.

FIG. 4 is a diagram of a flow object.

FIG. § illustrates the projection of data onto the user
interface.

FIG. 6 illustrates the coupling protocol.

FIG. 7 shows an example program.

FIG. 8 shows the total network of the example program.

FIG. 9 shows the route of the text flow object Z in the
example program.

FIG. 10 shows the dependent set of the flow object z.

FIG. 11 shows the dependent set of the flow object Y after
the Y button is pushed.

FIGS. 12 and 13 show a Source Connector component
and a Sink Connector component.

FIG. 14 shows the effect of a Sink Connector component
on a flow.

FIGS. 15 and 16 show the effect of a Source Connector
component on a flow with a single wire and multiple wires
connected to the corresponding source connector.

FIG. 17 shows a source wired to four sinks for purposes
of analysis.

FIGS. 18 and 19 show a generic Setting Source compo-
nent and a Text Source component.

FIGS. 20 and 21 show an Indexed Collector component
and an Indexed Splitter Component.

FIG. 22 shows a Named Splitter component.

FIGS. 23 and 24 show a Direct Selector component and
an Indirect Selector component.

FIG. 25 shows a characteristic idiom combining an Indi-
rect Selector component and a choose-one component.

FIG. 26 shows a Map Collection component.

FIG. 27 shows a Main Window component.

FIG. 28 shows a Map Port component.

FIG. 29 shows six Child Window components: Horizontal
Palette, Vertical Palette, List Box, Button, Text Edit Box,
and Generic.

FIG. 30 shows the port wiring for a main window with
three child windows.

10

15

20

25

30

35

40

50

55

60

65

12

FIG. 31 shows a Menu component.

FIG. 32 shows a File Contents Filter component con-
nected to a Map Collection Component.

FIG. 33 shows a Subfiles Filter component and a Subdi-
rectories Filter component.

FIG. 34 shows a Text Distinguisher Filter component.

FIG. 35 shows a Change Distinguisher Filter component.

FIG. 36 shows a To Dolt Filter component.

FIG. 37 shows the combination of a To Dolt Filter
component and a Map Collection component acting as a
choose-one component.

FIG. 38 shows a Data Change Detector component.

FIG. 39 shows a Pass-through component.

FIG. 40 shows a Register component.

FIG. 41 shows a Boolean Selector component.

FIG. 42 shows a Match component.

FIG. 43 shows a Pick-at-Run component.

FIG. 44 shows a Dolt Sequencer component.

FIG. 45 shows the same example program as FIG. 1.

FIG. 46 shows the outside of the composite component
defined by the wiring diagram of FIG. 45.

FIG. 47 shows the use of a button to duplicate the function
of double-clicking a list box.

FIGS. 48 and 49 show alternative ways to wire a double-
click of a list box and a button to close a window.

FIG. 50 shows a menu of letters used in the naming of
forms.

FIG. 51 shows a syntax diagram for library forms.

FIG. 52 shows the general structure of the library form of
the composite component defined by the example in FIG.
45.

FIG. 53 shows a table of the subcomponents of the
example, with the subcomponent numbers as they appear in
the library form.

FIG. 54 repeats the wiring diagram of FIG. 45 with the
addition of subcomponent and wire numbers.

FIG. 55 augments the table of FIG. 53 by the addition of
the number of sources on each subcomponent.

FIG. 56 adds the <VA>and <LUDs>structures to the table
of FIG. 53.

FIG. 57 shows the <LZWDA>wire array structure.

FIG. 58 shows the complete structure of the library form
shown in FIG. 52.

FIG. 59 shows the wiring diagram of an example file
content browser.

FIGS. 60 and 61 show the subcomponent array and the
wire array of the file browser type description.

FIG. 62 shows the library form of the file browser type
description.

FIG. 63 shows the stages of the application of the P()
function applied to the file browser.

FIG. 64 shows the <XGA>of the file browser program.

FIGS. 65 and 66 show the X-form type descriptions for
the file browser and the file dialog type descriptions.

FIG. 67 shows the overall structure of the <XGA>of the
file browser program.

FIG. 68 shows a syntax diagram for instance forms.

FIG. 69 repeats FIG. 64, the gross structure of the file
browser program definition <XGA>.

FIG. 70 shows the stages of the application of the I()
function applied to the file browser program definition.

US 6,272,672 Bl

13

FIG. 71 shows a table of the key features of the 21
component instances in the file browser program.

FIGS. 72 and 73 show the instance structures for the two
composite components in the file browser: the top-level
anonymous component and the file dialog component.

FIG. 74 shows the gross structures of the instance array
and the program definition array, with the references
between and within them.

FIG. 75 applies the projection paradigm to the process of
wiring, debugging, and running a program.

FIG. 76 shows a Command component.

FIG. 77 shows a Probe component.

FIG. 78 shows the wiring diagram of the file browser
enhanced by the addition of coordinates for the positions of
the components.

FIG. 79 shows the file browser type definition with all
E-form information present.

FIG. 80 shows a transaction object and its relationship to
its current object and the underlying object.

FIG. 81 shows a Transaction Register component.

FIG. 82 shows the use of a Transaction Register compo-
nent in the construction of a dialog.

FIG. 83 shows a File Transaction Register component.

FIG. 84 shows an Open Dialog component.

FIG. 85 shows a characteristic idiom combining a Trans-
action Register component and an Open Dialog component.
FIG. 86 shows an Open Dialog Projector component.

FIG. 87 shows a first approximation to a file-open wiring
diagram.

FIG. 88 shows the final form of the file-open wiring
diagram after addition of a new composite component.

FIG. 89 shows a Question Box component.

FIG. 90 shows the wiring diagram of the new composite
component added to the file-open wiring diagram.

FIGS. 91 and 92 show a Component Description compo-
nent and a Component Invocation component.

FIG. 93 shows a Display List Child Window component.

FIG. 94 shows four Drawing Tool components.

FIG. 95 shows an example drawing program.

FIG. 96 shows the communication paths among a Pro-
jector object, a Projectee object, and a child window.

FIGS. 97 and 98 show a Generic Projector Child Window
component and a Projector Engine component.

FIG. 99 shows how the Generic Projector Child Window
component and Projector Engine component are wired
together.

FIG. 100 shows the most general form of the wiring of the
Generic Projector Child Window component and Projector
Engine component.

FIG. 101 shows the communication paths among a Tool
object, a Projector object, a Projectee object, and a child
window.

FIG. 102 shows the wiring diagram of a composite
component which implements a conditional functional.

FIG. 103 shows a constant computational component.

FIGS. 104 and 105 show two applications of a unary
computational component.

FIG. 106 shows a binary computational component used
for multiplication.

FIGS. 107, 108, and 109 show the wiring diagrams of the
three function composite components used as inputs to the
conditional functional component.

10

20

25

30

35

40

45

50

55

60

65

14

FIG. 110 shows the final definition of the factorial com-
ponent.

FIG. 111 shows a component market model.

FIG. 112 shows a high-level block diagram of an assem-
bly tool.

FIG. 113 shows, in tabular form, nine aspects of every
component type.

FIG. 114 shows the relationships among component
producer, component consumer, assembly tool, and compo-
nent type aspects.

FIG. 115 shows, as an example, a transaction among three
component producers and one component consumer involv-
ing three component types.

PART 1 STRUCTURE AND BEHAVIOR OF
PROGRAMS

Section 1.1 Structure of a Program

A program (also called an application program or

application) consists of component instances which are
interconnected by wires.! (Where the context makes the
language unambiguous, component instances will be called
components.) Each component instance is an instance of
some component type. = >
* The use of italics signifies the first significant occurrence of a term which
has a particular meaning. Usually the term is defined, either explicitly or by
implication, in connection with its first significant occurrence.
2 The software model used in the descriptive language is object-oriented-
programming. The term “type” is used as the terms “type” or “class” would
be used in object-oriented programming. Similarly, “subtype” is used as
“derived type” or “subclass” would be used in object-oriented programming.
3 Object-oriented programming is the source of concepts used in the language
of this description; that is not to say that the thing being described is
object-oriented programming. However, there is one point of view in which
what is described is an extension to object-oriented programming.

FIG. 1 shows a visual rendering of the structure of an
example program. The program performs the principal func-
tion of a standard file dialog box, namely the coordination of
a directory list box and a file list box in assisting the user to
find and designate a file anywhere in a hierarchical file
system. This example is analyzed in detail in Section 4.6.

Every component has an inside and an outside. The
outsides of all components have a similar general plan,
whereas the insides of different components might be con-
structed from different plans.

The construction plan (and, by implication, the functional
design) for the inside of a component is determined by the
component’s type. Component types are divided into two
broad categories, primitive and composite (see Section 3.1).

Here is the plan for the construction of the outside of
every component. The outside of each component consists
solely of zero or more connectors. Each connector is an
instance of one of two types: the source connector type,
whose instances are source connectors (sources), shown in
FIG. 2, and the sink connector type, whose instances are sink
connectors (sinks), shown in FIG. 3. The source connector
type and the sink connector type are derived from a common
connector type. The common connector type prescribes that
every connector has a storage register (instance variable)
called flow storage, which can hold a value which is either
unambiguously invalid (such as a “nil” pointer), or is a
reference to a flow object (to be described below). If a
connector’s flow storage has a valid reference to a flow
object, the connector refers to the flow object.

Wire instances (wires) are instances of the wire type.
Wires are the means by which components are intercon-
nected. A wire has two ends. In any given program one end
of each wire is uniquely identified with (“ends in” or
“connects to”) some source connector of some component.

US 6,272,672 Bl

15

The other end of the same wire is identified with some
sink connector of some component (almost always a differ-
ent component from the one at the other end of the wire).
Each wire (considered as an object) must be able to supply
the identity of the component and sink connector at its sink
end.

Every wire must be connected to one sink and one source.
Every source may be connected to any number of wires,
including zero. Every sink may be connected to zero or one
wire, but no other number of wires.

Section 1.2 Flow Objects

The type flow object is an abstract type whose subtype
instances contain the objects processed by the program.

Every flow object (i.e., every instance of an instantiating
subtype of flow object) has a protocol (i.e., a repertoire of
oop messages® to which it responds), part of which is
common to all flow objects (the common protocol), and part
of which is specific to the particular type of which the flow
object is an instance.

The common protocol contains, in addition to other
messages to be discussed later, messages which return the
following values. Unless the method by which a return value
is determined is specifically implied by the text below, it
may vary from flow object to flow object, and even from
time to time for the same flow object. (Terms introduced in
this list will be described below.)

1. Characterizing string. A short text string which char-
acterizes the flow object as a member of a type, class,
or category.

2. Distinguishing string. A short text string which distin-
guishes the flow object from other flow objects of the
same type, class, or category. Each flow object has an
instance variable, called the text distinguisher, which
can store such a string; if the variable is empty the
string is computed using a rule defined by the type of
the flow object.

3. Characterizing icon. One or more small graphics
(“icons”) which characterize the flow object.

4. Distinguishing icon. One or more small graphics
(“icons”) which distinguish the flow object. Each flow
object has an instance variable, called the icon
distinguisher, which can store one or more such icons;

if the variable is empty the appropriate
4 An oop message is a message to an object in the sense of object-oriented
programming. icon is computed using a rule defined by the type of the flow
object.

5- Owner. Each flow object has an instance variable which
can be invalid, or can contain an ordered pair (reference
to component, reference to source connector on
component); the component is called the owner of the
flow object.
Dependent set. Each flow object has an instance vari-
able which contains a (possibly empty) collection,
containing no duplicates, of ordered pairs (reference to
component, reference to sink connector on
component). The components are called the dependents
of the flow object. (A dependent of a flow object is a
component which needs to be notified when some
aspect of a flow object’s value has changed. The owner
of a flow object is the component with the responsi-
bility to notify all the dependents when such a change
occurs.)

* Host set. Each flow object has an instance variable
which contains a (possibly empty) collection, contain-
ing no duplicates, of references to components called
the hosts of the flow object. (A host is a component
which participates in some specific interaction with
another component.)

6.

10

20

25

30

35

40

45

50

55

60

65

16

The subobject of each flow object consisting of the
instance variables named above which are common to all
flow objects (namely the text distinguisher, the icon
distinguisher, the owner, the dependent set, and the host set),
together with the common protocol, is called the wrapper of
the flow object.

There is a flow object type whose instances are called MO
(meaningless object), and any connector can have a valid
reference to an MO.

FIG. 4 shows the data structure of a flow object as it might
actually be implemented in a dynamic object-oriented pro-
gramming system.

The following comments apply to FIG. 4.

1. Every object has an implementation-specific object
header, which might be empty in some implementa-
tions. Other than the object header, the flow object
consists of an array of pointers or handles. (A handle is
an implementation-specific designator of a storage-
occupying object which is location-invariant, thus per-
mitting the object to be moved while the unchanged
handle remains valid.)

2. The arrows point to the objects denoted by the handles.
A dotted arrow indicates that a handle might be nil, i.e.,
it denotes no object (or, in some implementations, it
denotes the nil object).

3. Each of the two reference sets might be empty. (The
host set is typically empty.)

4. The structure of a component reference is unspecified
here.

5. The structure of the thing stored in a connector as a flow
object reference is also unspecified here. It might, for
example, be a handle.

6. Note that the data object is not in the flow object. This
permits multiple flow objects “containing” the same
data object. In particular, it permits making copies of
flow objects which “contain” the same data object.

7. Each MO is an instance of a unique data type. What
distinguishes the type of MO is simply that, under a
design rule discussed in Section 2.2, all components
must accept MO as a value at all sinks.

8. The object labeled “MO or other object” might not be
a data object but might be a reference to a data object.
The form of the reference is unspecified. (This addi-
tional level of indirection might be required in a
distributed-object system.)

Section 1.3 Communication Acts

The behavior of a program is described in terms of
communication acts. [Note: in conventional terms, the
behavior of a program is described by the changes which
occur on its interface(s) to the world outside the program.
We will from time to time be relating this external-interface
behavior (which we can call external behavior) to the
behavior being presently described (which we can call
internal behavior).]

The internal behavior of a program is a sequence of
communication acts. (There can be generalizations of this
model in which some communication acts may be consid-
ered to occur concurrently.) Every communication act
occurs between two components, one called the sender and
one called the receiver.

Each communication act performs one or the other of two
distinct communication-act functions: routing and message
passing. Of the five distinct types of communication acts, the
routing function is performed by the flow communication
act, and the message-passing function is performed by the
notify owner, notify dependents, notify hosts, and pick
communication acts.’

US 6,272,672 Bl

17

> Message-passing communication acts are not oop messages. (They might,
however, be implemented using oop messages.) The words “communication
act” will be retained in places where they will help to eliminate possible
ambiguity of interpretation.

Section 1.4 The Routing Communication-act Function

The total network of any particular program is the
directed graph whose nodes are all the components of the
program and whose branches are all the wires of the pro-
gram. The direction of a branch is from source to sink. (The
total network looks like the wiring diagram, except that all
the connectors of each component are lumped together into
a single node. It is possible for the total network of a
program to contain cycles, as the example of FIG. 1 does.)

The route of a flow object is a subgraph of the total
network such that

1. the nodes of the route are in one-to-one correspondence
with that subset of all components, each component of
which subset has some connector which refers to the
flow object, and

2. the branches of the route are in one-to-one correspon-
dence with that subset of all wires, each wire of which
subset has a connector at the source end which refers to
the flow object and a connector at the sink end which
refers to the flow object.

Flow. Communication acts called flows determine the
routes of flow objects, which in turn make the flow objects
available at the sinks of certain components for processing.
A flow copies a flow object reference from a source con-
nector to a sink wired to that source and makes the receiving
component aware of the arrival. The flow object itself is
neither moved nor copied. The component containing the
source connector may be said to be “sourcing” the flow or
the flow object, and the other component may be said to be
“sinking” the flow or the flow object.

One or more flows from a particular source connector is
implemented as follows.

1. At some point in its processing or creation of a flow
object and prior to initiating the flow(s), the sending
component must place a flow object reference in the
flow storage of this source connector. It does this by
sending an assign flow object reference or an assign
hosted flow object reference oop message to that source
connector, with the flow object reference as a parameter
(see below for details).

2. Subsequently, the sending component begins the
flow(s) by sending a send flow oop message to the
source connector (see below for details).

Assign flow object reference/Assign hosted flow object
reference. When a source connector receives an assign flow
object reference or assign hosted flow object reference
message, it performs the following two steps.

1. It checks whether its flow storage validly references a

flow object; if so,

a. (in the case of the hosted variant) it removes any
reference to its component from the referenced flow
object’s wrapper’s host set, and

b. for each sink connector wired to it, the source sends this
sink an invalidate sink connector oop message (see
below for details).

2. Then the source connector puts the flow object refer-
ence in the message parameter into its flow storage,
making it valid. In the case of the hosted variant, it adds
a (nonduplicate) reference to its component to the flow
object’s wrapper’s host set.

Invalidate sink connector. When an invalidate sink con-

nector oop message is received by a particular sink connec-
tor on the outside of a particular component, the connector

18

checks whether its flow storage is valid. If not, the operation
is complete. If the flow storage contains a valid reference to
a flow object,

a. the sink removes any reference to its component from
5 the referenced flow object’s host set,

b. the sink removes any reference to its component and
itself from the referenced flow object’s dependent set,

c. it sends a sink connector invalidated oop message to its
component with the following two parameters: the flow
object reference in its flow storage, and a reference to
itself, and

d. it invalidates its flow storage.

(A component’s response to the sink connector invali-
dated message is discussed in Section 2.2. This message is
typically ignored.)

Send flow. The source connector iterates over the collec-
tion of wires connected to it, sending, for each wire, a
receive flow oop message, with the flow object reference as
a message parameter, to the sink connector at the other end
of this wire.

Receive flow. The sink connector places the flow object
reference into its flow storage. (The flow storage is already
invalid.)

The sink connector then sends a flow received oop
message, with an identifier of the sink connector as a
message parameter, to its component. (A component’s
response to the flow received message is discussed in
Section 2.2. It will be discussed in Section 3.4 that the sink
connectors associated with composite components do not
behave as described here.)

Section 1.5 The Message-passing Communication-act
Function

A communication act message is passed from a sending
component to a receiving component. Message passing is
defined with respect to a given flow object, and the sender
and receiver of the message are both on the route of the flow
object.® Indeed, it is a function of the flow to put in place the
component and flow-object references which are used dur-
ing message passing.

The four message-passing communication acts are notify
owner, notify dependents, notify hosts, and pick.

Notify owner. The notify owner communication act is
implemented as follows. The sending component sends a
notify owner oop message (with optional parameter(s)) to a
flow object referenced by one of the component’s connec-
tors. That flow object sends an owner be notified oop
message (with the owner’s source as the first parameter and
any other parameter(s) following) to the component refer-
enced in the owner instance variable of its wrapper.

Notify dependents. The notify dependents communication
act is implemented as follows. The sending component
(typically the flow object’s owner) sends a notify dependents
oop message (with optional parameter(s)) to a flow object
referenced by one of the component’s connectors. For each
(component, sink) element in its wrapper’s dependent set,
the flow object sends a dependent be notified oop message
(with the named sink as the first parameter and any other
parameter(s) following) to the referenced component.

6 © Note that the route of a flow object serves to define at run time the scope
of candidate recipients of a message-passing communication act analogously
to the way, in a dynamic object-oriented programming language, the ancestor-
class chain of the receiving object of an oop message performs this function.

Adependent of a flow object is a component which needs
to be notified when some aspect of a flow object’s value has
changed. (The additional parameters of the dependent be
notified message might contain specific information about
what aspect of the flow object has changed.)

15

20

25

45

50

55

65

US 6,272,672 Bl

19

Notify hosts. The notify hosts communication act is
implemented as follows. The sending component sends a
notify hosts oop message to a flow object referenced by one
of the component’s connectors. The first parameter of the
notify hosts message is the name of the oop message to be
sent to the receiving component(s); there may be additional
parameter(s). For each element in its wrapper’s host set, the
flow object sends to the component named in this element
the message whose name is the first parameter (with any
additional parameter(s) attached to the message). If the host
component does not recognize the message, this is not an
error, simply a null operation. (During this iteration, each
component should receive this message at most once; this is
assured by the no-duplicate property of the host set.)

The designer of a component decides whether the com-
ponent is to be a host of a flow object which arrives at a
particular sink or which it is sourcing at a particular source.
If so:

1. If the connector is a source, the component uses the
assign hosted flow object reference variant when set-
ting up a flow out of the source.

2. If the connector is a sink, the component sends an
identify host oop message to the sink. This adds a
(nonduplicate) reference to the component to the ref-
erenced flow object’s wrapper’s host set.

Pick. The pick communication act is associated only with
flow objects of the type Dolt (pronounced “do it”); it is
implemented as follows. The sending component sends a
pick oop message (with optional parameter(s)) to a Dolt
flow object referenced by one of the component’s connec-
tors. The Dolt flow object contains instance variables which
reference the receiving component (called the Dolt server)
and the name of the message to be sent to the Dolt server,
with space for additional parameters. In addition, a Dolt has
a Boolean instance variable which carries enabled/disabled
state information. When the Dolt receives a pick oop
message, if and only if the Dolt is enabled, the named
message, with the optional parameters attached, is sent to the
Dolt server.

Section 1.6 Interpretation of Flows; The Projection Para-
digm

It is important to note that a flow goes in only one
direction on each wire, from source to sink. Informally, if
components are drawn with sinks on their left and sources on
their right, this means that the general movement of flows is
left-to-right across the wiring diagram of the program. The
components in which flow objects end up are often user-
interface components. This is a major aspect of the relation-
ship between internal behavior and external behavior: flows
push data (more correctly, flows push references to flow
objects referencing data) out to the user interface, where the
flow objects’ data are presented to the user. (See FIG. 5.) For
example, a flow object which carries a body of formatted
text may end up in a component whose function is to display
formatted text in a child window. (Keep in mind that flow
objects do not move; only references move.)

This interpretation in which the purpose of flows is to
push data out to the user interface will here be called the
“projection paradigm,” which suggests that the program is
analogous to a photographic projector projecting data onto
the user-interface “screen” at the right side of the wiring
diagram. The following two points hold for the projection
paradigm. (Much of the subsequent discussion in this
description is directed to making the following two points
concrete.)

1. The projection paradigm is a generally applicable

model of applications with display-out/event-in user
interfaces.

1

W

20

25

30

35

45

50

60

65

20

2. Applying the projection paradigm to programming
tools leads to a model of program development which
is distinct from the sequential file-processing model
associated with text editors, compilers and linkers. The
projection-based model does not contain the traditional
distinction between the time at which program prepa-
ration occurs and the time at which the prepared
program is run. Rather, these two operations can be
thought of as occurring concurrently. Thus, the projec-
tion paradigm contains within it a theory of program
development in which “source-level debugging” occurs
naturally.

A major distinction of this invention is the way the
bidirectional control and communication requirements of
display-out/event-in applications are implemented within a
formal system with the following elements.

1. Components and the way they are wired determine

unidirectional flows.

2. The unidirectional flows determine which components
make reference to which flow objects, and which flow
objects make reference to which components.

3. Control and communication occurs across chains of
these reference paths, from component to flow object
and from flow object to component, in such a way that
the process of component design is strongly decoupled
from the process of component application.

Section 1.7 Interpretation of Picks

A Dolt is a relatively simple flow object for signaling to
a Dolt server that a process specified by the Dolt is to be
invoked.

In the terms of the projection metaphor, Dolts often end
up in user interface components which implement such
user-interface control elements as buttons and menu items.
A Dolt can be viewed as a mechanism by which a server
component which implements an event-triggered function
projects itself onto the user interface. The enabled/disabled
instance variable of the Dolt shows up in the user-interface
element as “graying” or “disabling” of a button or menu
item. When the user-interface item is enabled, pushing the
button or picking the menu item initiates the server com-
ponent’s function. (Section 6.3 discusses an example in
which variable routing of Dolts accomplishes what is called
branching in conventional programming.)

Section 1.8 Events

An event is not a communication act, but is similar in that
it has a sender and a receiver. The sender of an event,
however, is outside the program structure described here (for
example, the sender might be the operating system in whose
environment the program operates). The receiver of an event
is a component. For example, a user-interface component
whose function is to show a button and which has a sink
connector which receives a Dolt, picks that Dolt in response
to receipt of a button-push event from the user-interface
management system. It is important to note that the possibly
quite complex sequence of communication acts generated by
that pick has completed before control returns to the button
component from the pick oop message.

Section 1.9 Interpretation of Notify Owner and Notify
Dependent Communication Acts

Owner and dependent notifies are used to propagate data
changes in such a way as to maintain consistency throughout
the wiring diagram and the user interface. For example,
user-interface components which project data onto the user
interface are dependents of the flow objects containing those
data. When such a component receives a dependent be
notified message, it looks at the flow object referred to in the
flow storage of the connector specified in the message and
refreshes the user interface.

US 6,272,672 Bl

21

User-interface components can also change data. For
example, a dialog box can cause an element of a database to
be changed. If the change at the dialog is confirmed (the OK
button is pushed) the dialog sends a notify owner message
to the flow object being projected onto the dialog. The owner
receives from the flow object an owner be notified message,
and it sends a notify dependents message back to the flow
object. Note that the owner does not need to change the data;
the dialog has already done that.

The “coupling protocol” with which owner and dependent
notifies maintain consistency of data across a wiring dia-
gram is discussed in more detail in Section 6.4.

To avoid race conditions or duplicate updating, each
dependent sending a notify owner sets a local blocking flag
at the beginning of the notify owner communication act and
resets the flag after control returns from that communication
act, the purpose of which blocking flag is to disable the
response of the component to the dependent be notified
message which the owner may cause to be issued. The
duration of the notify owner message sent by the dialog
component contains entirely within it the durations of all
dependent be notified messages sent by the owner.

A component is never an owner and a dependent of the
same flow object.

FIG. 6 shows a typical application of the coupling pro-
tocol. There are components A, B, C, D, and E, and flow
objects x and y. A is owner of x and B is owner of y. The little
squares next to the connectors reveal the contents of flow
storage. The sequence of steps is as follows.

1. C changes x directly and has recomputed its outputs
based on the new value of x. C is thus obliged to notify
the world. It does this by sending message a: notify
owner to X.

2. x knows that A is its owner, so sends message b: owner
be notified to A.

3. Because the owner be notified message named the
source connector referencing the flow object which had
changed, A knows to send c: notify dependents to x.

4. x knows that its dependents are C and D, so sends out
messages d and e: dependent be notified to C and D.

5. C does not act on the message because it has set its
blocking flag before sending message a. (C will reset its
blocking flag after control returns from message a.) D,
however, has just learned about the change to X, so
recomputes its outputs based on the new input.

Section 1.10 Interpretation of Notify Hosts Communica-

tion Acts

Host notification protocols are used to handle whatever

action-at-a-distance communication between components is
not accommodated by the preceding communication acts. In
effect, host notification protocols cover those (relatively
rare) forms of intercomponent coupling which are not natu-
rally accommodated by the projection metaphor. An
example will be discussed in Section 6.6.

Part 2 Program Sequence Control

Section 2.1 The Steady and Busy States of Applications

Each component spends most of its time in reset state,
sitting around waiting for a communication act. When it gets
such a stimulus, it responds immediately. This component-
type-specific response can include sourcing flow objects,
performing message-send communication acts, and (for
user-interface or system-interface components) changing the
appearance of the application or sending messages to the
environment. Similarly, if a component is defined to be
sensitive to certain kinds of events, it responds immediately

10

15

20

25

30

35

40

45

50

55

60

65

22

to those events, with the same repertoire of potential
responses. Thus, the application spends most of its time in
a steady state, and then occasionally it is very busy pushing
things around (the busy state), then it gets quiet again in
steady state.

During the application’s steady state, when all compo-
nents are in reset state, the relationships between inputs and
outputs of components are defined by the specifications of
the components. During the busy state, component input-
output relationships are in transition. Here is a fundamental
property of the model: The only thing that causes the
application to switch from the steady state to the busy state
is receipt of an event. (Explanation: If it were anything other
than an event, it would have come from a component inside
the application, which is then, by definition, already in busy
state.)

In a processing environment with a single processor, the
behavior of an application is sequential. That is, if a com-
ponent has a list of communication acts to perform in
response to an input, it does them sequentially, waiting for
the completion of the response to each act before beginning
the next act. Moreover, each communication act that it
performs does not complete until all the actions which that
communication act provokes are complete, Thus, if compo-
nent A sends a flow to component B (where B has only one
sink and therefore responds immediately to the flow; see
below), the lifetime of the response behavior of component
B is considered to be nested inside the lifetime of the flow
act performed by component A. Thus, during the busy state
all responses are nested inside the response of a component
which is responding to an event. Such nesting implies a
stack of communication acts. Since in a single-processor
system an event-receptive component will only receive an
event when the application is in the steady state, event
responses are always and only the outermost responses in
the response stack.

Section 2.2 Sink State Change

There are two cases, in which a component is notified that
the state of one of its sinks is changed, that we must consider.
1. Propagation of new invalidity of an existing input.

The component receives a sink connector invalidated oop
message from one of its sinks. This is the case when an input
becomes invalid, and the previously valid input has caused
the computation of outputs which are now likely to be
incorrect. By design, the sink connector invalidated is
always followed by a flow received oop message (see
Section 1.4).

Normally, the component ignores the former and responds
to the latter.

2. Propagation of a new valid input. The component
receives a flow received message from one of its sinks,
or the component receives a dependent be notified
message with that sink as the first parameter. These two
conditions lead to what is called input change. This is
the case when an input is made valid with a flow object
for which the output response of the component must
be computed. The following discussion covers this
case.

Flow received. If by design the component is a dependent
of the flow object arriving at the sink, the pair (component,
sink) is added to the flow object’s wrapper’s dependent set.
Then, continue at input change.

Dependent be notified. Continue at input change.

Input change. If a component has only one sink connector,
the component computes its new output(s) immediately
(including side effects such as user-interface changes). Then,

US 6,272,672 Bl

23

for the new output value at each source, the component
executes the new-output procedure.

New-output procedure. If (1) the reference to the flow
object of the new output at the source connector is
unchanged, and (2) the source was valid previous to this new
output, then the component sends a notify dependents mes-
sage to the flow object referenced by the source. Otherwise,
the component initiates a flow from the source using the new
output value.

What if the component has more than one sink? Because
of sequentiality, it will receive input changes one at a time.
When does it respond to all the input changes which it is
going to get? Neither of the following assumptions about the
arrival of input changes is necessarily a valid assumption.

1. The component knows which subset of its sinks is

going to receive input changes during this particular
busy state. (For example,” during a particular busy state
a Direct Selector component might receive a new index
at its index sink and might, or might not, receive a new
collection at its collection sink. Furthermore, if it
receives both, there will be a transient nonsense con-
dition after the first, and before the second, receipt.)

2. The component knows in what order the input changes

will arrive.

Therefore, the component does not know, by itself, when
the “last” input change has arrived so it can begin its
response.

Inputs to some sinks of multi-sink components can prop-
erly lead to immediate responses. For example, by design,
input to either sink of a List Box component can properly be
processed immediately, whereas input to a sink of a Collec-
tor with more than one sink wired should not necessarily be
processed immediately. The following discussion concerns
the latter case, when a component receives an input change,
and the computation in response to that input change
requires at least one well-defined input at another sink.

7 The forward references to yet-to-be-defined component types can be ignored
on the first reading.

Here is how the response to an input change of a multiple-
sink component is initiated. There is a pending-action list
associated with the program. Each multi-sink component
which, because of its design, may need to wait for multiple
inputs, contains a single procedure which responds to the set
of sink inputs after all inputs which are going to change have
changed; this procedure is called the component’s complete-
input-response procedure. When such a multi-sink compo-
nent receives an input change with respect to a sink con-
nector, the component adds a reference to itself to the end of
the program’s pending-action list. (The list does not contain
duplicates; any attempt to add a duplicate to the list will do
nothing.) That’s all the component does. (The sink connec-
tor, of course, has stored a valid reference to the received
flow object.) The component has now left reset state and is
in pending state.

The program is an object which consists of a (typically
composite) component (see Section 3.5), plus the pending-
action list.

Unwind-pending procedure. The program has an unwind-
pending procedure which does the following.

1. Examine the pending-action list. If it is empty, exit the

procedure.

2. Otherwise, remove the first component reference from

the pending-action list.

3. Execute the complete-input-response procedure of the

referenced component.

4. Go back to step 1.

Note that step 3 can add to the pending-action list, so a
definition of the unwind-pending procedure which simply
iterates through a snapshot of the list would be incorrect.

10

15

20

25

30

35

40

45

50

55

60

65

24

Complete-input-response procedure. This is the general
outline of every component’s complete-input-response pro-
cedure.

1. The component examines whether a computation of
outputs can be performed with the existing set of valid
sinks. If so, the computation is performed (including
side effects such as user-interface changes), the new-
output procedure is performed for each source with a
new output, the component returns to reset state, and
the procedure exits.

2. Otherwise, the component adds a reference to itself to
the end of the pending-action list, the component
remains in pending state, and the procedure exits.

The program’s unwind-pending procedure is called at the
end of the event-response procedure in each component
which is event-sensitive.

Event-response procedure. Here is what happens when an
event arrives at an event-sensitive component.

a. The application is in steady state before the event-
sensitive component receives the event. The transition
to busy state occurs when the operating system gives
control to the event-sensitive component.

b. The response of the component to the event is to
execute a sequence of one or more communication acts,
as well as possible component-specific processes (such
as updating a user-interface display).

c. At the end of this sequence of acts the pending-action
list may be nonempty. If so, that means that there are
some multisink components which are in pending state.
To negate this condition, the event-sensitive component
always calls the program’s unwind-pending procedure.
If the program is correct, the net effect of calling the
unwind-pending procedure is to empty the pending-
action list and to leave all components in the reset state.

d. Finally, control is returned to the operating system,
which return of control defines the end of busy state and
the beginning of steady state.

The plan presented here guarantees that each component
will be left in reset state when the application re-enters
steady state. However, a nonterminating loop, in which a
component keeps adding itself to the pending-action list
because it does not have sufficient valid inputs, is possible.
This means that the inputs to the component which keeps
adding itself to the pending-action list are incorrectly wired.

This nonterminating loop condition can be avoided by
adopting a component design rule which requires all com-
ponents which can cause such a nonterminating loop

1. to accept and meaningfully respond to MO on all sinks,
and

2. to terminate the response to every input change in reset
state, sourcing MO as necessary where meaningful
outputs cannot be computed.

Under this design rule the busy state will always termi-
nate; the cost of the design rule is the possibility of some
spurious recalculations. Also under this design rule, flashing
can be minimized by requiring that user-interface compo-
nents not change their displays when receiving MO for
display.

This design rule is assumed in the following discussions
of specific components. Under this design rule, the seman-
tics of MO are as follows: a component reacts to an MO
input at a sink the same as if that sink’s flow storage were
invalid.

Section 2.3 Clear-before-send Rule

Receipt of an oop message resulting from a pick, notify
owner, or notify hosts is not a sink state change in the above

US 6,272,672 Bl

25

sense. In general, a component responds immediately to
receipt of such a message; however, flows may need to be
complete before the response is begun. (The use of a Dolt for
synchronization, for example, requires that all flows be
complete before the Dolt begins its action.) For this reason
we adopt the clear-before-send rule.
Clear-before-send rule. Every component which initiates
a message-passing communication act must first call the
program’s unwind-pending procedure. (The exception
occurs when it is known that no component can be in
pending state, for example, the button component which
picks a Dolt immediately after receiving an event.)
Thus, the program’s unwind-pending procedure is called
under two conditions:
1. as the result of application of the clear-before-send rule,
and
2. at the end of the event-response procedure in each
event-sensitive component.

Section 2.4 An Example of Change Propagation

FIG. 7 shows a display captured from an assembly tool,
with the wiring diagram above and the window created by
the running program below. (A full understanding of this
example will require a second reading after a reading of the
component definitions in Part 4.)

The three strings, “X”, “Y”, and “Z”, sourced by the three
Text Source components at the left are grouped into a
collection by the left-hand Collector component. Their three
text distinguishers, X, Y, and Z, show up in the child window
produced by the Horizontal Palette component (at the top).
In the window displayed by the running program, the Z
button is depressed, causing the third element of the collec-
tion to show up in the text entry child window, seen below
the palette in the running-program window.

FIG. 8 shows the total network of the program. (The
components are labeled informally.)

FIG. 9 shows the route of the text flow object Z. Notice
that there is no line between the collector and the selector,
because what flows between them is a collection flow object,
not any element of the collection.

The dependent set in the wrapper of the text flow object
Z looks like FIG. 10 (the components and connectors are
labeled informally).

The Text Entry component has made itself a dependent of
the flow object which arrives at its sink because it must be
notified if the text value changes, in order to update the
display in its child window.

Now assume that the user clicks the Y button of the
palette. The environment’s user-interface management sys-
tem (or the Palette component, or a combination of them)
causes the middle button to appear depressed; the Selector,
as the owner of the collection which the Palette component
sinks and displays, receives from the Palette component
(indirectly, via the (X,Y,Z) selected collection flow object)
an owner be notified message, which causes it to conclude
that it must change its selection from the third to the second
element of its input list. Because the Selector is a one-sink
component, it directly executes a new-output procedure with
respect to its second source connector.

Here are the steps of the new-output procedure. Since a
new flow object reference is to be put into the lower source,
the Selector sends an assign hosted flow object reference
oop message to this source. (An example showing why the
Selector makes itself a host of its selected output is given in
Section 6.6.) As part of the execution of this message, the

10

15

20

25

30

35

40

45

50

55

60

65

26

source removes the reference to the Selector component in
the host set of the wrapper of text flow object Z, and sends
an invalidate sink connector oop message to the sink of the
Text Entry component, which causes the following actions
(see Section 1.4).

1. The sink connector removes the reference to the Text
Entry component and itself in the dependent set of the
wrapper of text flow object Z (see FIG. 10), emptying the
set. Thus, the Text Entry component is no longer a dependent
of text flow object Z.

2. The sink connector sends a sink connector invalidated
oop message to the Text Entry component, which does
nothing.

3. Then the sink connector invalidates its flow storage.

Then the assign hosted flow object reference oop message
puts a reference to the newly selected flow object (text flow
object Y) into the flow storage of the Indirect Selector
component’s second source connector. It also adds a refer-
ence to the Selector component to the host set of the wrapper
of text flow object Y.

Then the Selector component sends a send flow oop
message to its second source connector. This sends a receive
flow message (with a reference to text flow object Y as a
parameter) to the sink of the Text Entry component. The sink
then sends a flow received oop message to the Text Entry
component, with a parameter which identifies the sink.

The response to the flow received oop message, from
Section 2.2, is as follows.

1. The Text Entry component makes itself a dependent of
text flow object Y. It does this by adding (component,
sink) to text flow object Y’s wrapper’s dependent set,
so that the latter looks like FIG. 11.

2. The component then updates the display with the new
data.

Part 3 Composite Components

Section 3.1 Primitive and Composite Components

The program definition structures described above can be
called wiring diagrams. The description of Parts 1 and 2 has
dealt entirely with the outsides of components and with
communication-act behaviors.

The inside of each component determines how that com-
ponent behaves in response to the communication acts that
it receives. The way the inside of a component is built may
be called the implementation of the component.

Component implementations (hence, component types)
fall into two broad categories.

1. The implementation of a primitive component is
defined outside this model. For example, a component
might be implemented using a procedural language
available to a programming environment.

2. A composite component is implemented with a wiring
diagram.

The following discussion describes how a wiring diagram
is considered to be encapsulated, resulting in the definition
of a composite component type, from which instances are
created whose responses to communication acts are defined
entirely by the wiring diagram. The outside of a composite
component produced by encapsulation follows entirely the
description of Part 1. The inside of the composite component
is the wiring diagram.®

Section 3.2 Connector Components

There are two primitive component types which partici-
pate in a special way in the definition of encapsulation; these
are called connector component types. (Note that these are

US 6,272,672 Bl

27

component types and are not the connector types described
in Part 1.) There is a source connector component type and
a sink connector component type. These primitive compo-
nent types define the functional relationships between the
wiring diagram inside a composite component and the
wiring diagram outside the composite component.
Connector components play the role of formal parameters
in procedural abstraction, formally constraining what about
the inside can be known from the outside. There is a
one-to-one correspondence between the set of connector
components in the wiring diagram inside a composite com-
ponent (which wiring diagram defines its implementation).
and the set of connectors on the outside of that composite
component.
1. Each source connector primitive component contains
one sink connector (the small circle on the left of FIG.
12). The source connector primitive component corre-
sponds to one source connector on the outside of the
composite component. The name box at the
© Notice that, because of these properties, the rules of program structure define
an extensible program-description language. bottom of the icon establishes
the correspondence between this connector component and a label associated
with the outside connector. The hatched vertical bar is intended to suggest the
wall between the inside (on the left) and the outside (on the right) of the

composite component. The large circle on the right is nonfunctional; it is
meant to suggest the corresponding source on the outside of the wall.

2. Each sink connector primitive component contains one
source connector (the small circle on the right of FIG.
13). The sink connector primitive component corre-
sponds to one sink connector on the outside of the
composite component. The name box at the bottom of
the icon establishes the correspondence between this
connector component and a label associated with the
outside connector. The hatched vertical bar is intended
to suggest the wall between the inside (on the right) and
the outside (on the left) of the composite component.
The large circle on the left is nonfunctional; it is meant
to suggest the corresponding sink on the outside of the
wall.

The example of Section 1.1 shows a source connector
component in a wiring diagram which defines (the inside of)
a composite component.

Section 3.3 Flows Into and Out of a Composite Compo-
nent

Each connector component on the inside directly com-
municates with its corresponding connector on the outside,
as follows.

Informally, the wall separating the inside and the outside
of a composite component can be considered to be removed,
and the wire(s) connecting an outside connector and the
wire(s) connecting the corresponding inside connector com-
ponent can be considered to be the same wire(s). We
consider the following two cases.

1. Flows sinked by a composite component. Every flow
received by a sink connector of a composite component
immediately initiates a flow sourced by the source
connector of the corresponding inside sink connector
component, with the same flow object.

The wrapper of the flow object is unchanged. See FIG. 14.

2. Flows sourced by a composite component. Every flow
received by the sink connector of an inside source
connector component immediately initiates a flow
sourced by the corresponding outside source connector,
with the same flow object. The wrapper of the flow
object is unchanged. See FIG. 15.

In the second case there is an additional possibility to

consider. The outside source connector can connect to more
than one sink via more than one wire, one wire to each

10

15

20

25

30

35

40

45

50

55

60

65

28

outside sink. In this case, we consider that the inside source
is directly wired to each of the outside sinks, via the dotted
wires in FIG. 16.

The above paragraphs completely define encapsulation.
Note that composite components are not even seen by
message-passing communication acts. That is, message-
passing communication acts pass from primitive component
to primitive component, passing transparently through the
walls of composite components as necessary. This observa-
tion has the following consequences.

1. A composite component is never the owner of a flow

object.

2. A composite component is never a dependent or host of
a flow object.

3. Every sender and every receiver of a message-passing
communication act (and every receiver of an event) is
a primitive component type.

These consequences mean that the original descriptions of
message-passing communications acts require no modifica-
tion to account for composite component types.

In other words, the composite component type is merely
a hiding device; it is transparent to internal program behav-
ior. However, composite component types can be invoked,
both as programs and dynamically during the execution of a
program (see Section 6.5) and must be thought of as
first-class component types.

Section 3.4 Summary of Sink Behaviors

In Section 1.4, the behavior of a sink connector in
response to the receive flow oop message was described
with the caveat that the description did not apply to those
sink connectors on the outside of composite components.
We now have the information we need to complete this
description. FIG. 17 shows a source wired to four sinks;
these four sinks represent, from top to bottom, the four cases
that we need to consider.

1. A sink of a primitive (not a source connector
component) which is not a dependent of the arriving
flow object.

2. A sink of a primitive (not a source connector
component) which is a dependent of the arriving flow
object.

3. The sink of a source connector component.

4. A sink of a composite component.

Specifically, we must describe the behavior of these sink
connectors in response to receipt of a receive flow oop
message with a single parameter which is a reference to the
flow object. As described in Section 1.4, the receive flow is
sent by the send flow method of the source connector as
follows:

Send flow: The source connector iterates over the collec-
tion of wires connected to it, sending, for each wire, a
receive flow oop message, with the flow object reference as
a message parameter, to the sink connector at the other end
of this wire.

Cases 1 and 2 are described in Section 1.4 under receive
flow as follows.

1. The sink connector places the flow object reference into

its flow storage. (The flow storage is already invalid.)

2. The sink connector then sends a flow received oop
message, with an identifier of the sink connector as a
message parameter, to its component. (A component’s
response to the flow received message is discussed in
Section 2.2.)

Case 3 is the same as case 1. The difference is in the

source connector component’s response to the flow received
message. Each source connector component appearing in the

US 6,272,672 Bl

29

definition of the wiring diagram of a composite component
stores a reference to the corresponding outside source
connector, thus permitting it to send an assign flow object
reference and a send flow to the outside source connector
with the same flow object. (The example in Section 5.4
elaborates.)

Case 4 is treated in Section 5.3, where the distinction is
made between the description of a sink connector object and
an instance of a sink connector object. The instance carries
the flow storage. The description carries identification of the
corresponding inside sink connector component. This iden-
tification can be accessed when the sink connector instance
is processing the flow received oop message.

As it turns out, the sink connector description holds such
identification in all four cases discussed here, and this
identification is used similarly in all four cases. (This is
elaborated in the discussion of <sink description object>in
Section 5.3.)

Section 3.5 Structure of an Application Program

In Section 1.1, a program was characterized as a wiring
diagram. It is more useful to characterize a program as a
single composite component, rather than as the wiring
diagram from which the composite component was encap-
sulated. Characterizing an application as a composite com-
ponent allows for that component to communicate with the
operating system by means of flows through its connectors,
for example, at invocation time.

Part 4 A Fundamental Set of Primitive Components

This part presents a collection of application-domain-
independent components which, together with some
application-domain-specific components®, are capable of
building a large set of application programs. These compo-
nents are being described as “primitive” components; in
fact, some of them can be implemented as composite com-
ponents. It is not our purpose here to describe a minimum or
complete set of primitives.

° Application-domain-specific components do such things as compute spread-
sheets, perform database queries, and execute animation sequences. Note that
it may not be necessary to create such function in a component; it may be
preferable to harness existing application-specific software in the guise of a
component.

Section 4.1 Settings

Some primitive component types must remember values
which specialize them for application in a particular context.
These persistent values remembered by primitive compo-
nent types are called settings. There are several uses for
settings. In one use, a primitive component might be built in
a general way to be applicable in a variety of contexts. In this
application, a setting specifies a specialization of the general
component definition, in which only part of its total func-
tionality will be used. Considering the more general issue of
tools and environments for building software, this kind of a
setting would be similar to a pragma, which can provide
optimization information at “build” or “compile” time to a
development tool, or which can alternatively be used at
“run” time as state information in an “interpretive” envi-
ronment.

Another use of a setting is to store application-specific
information, such as a set of numbers which characterizes
the size and position of a child window in a main window.

In the following discussion we will not distinguish
between these two uses of settings. Such distinctions arise
from the kinds of engineering considerations which occur in
the construction of tools and programming environments.
We will also not comment on the implementation of settings,
which can also be tool- and environment-specific. We begin

20

25

30

35

40

45

50

55

60

65

30

with the description of a component which makes available
to the program a setting value.

Setting Source Component. A setting source component,
shown in a generic form in FIG. 18, has a single source
connector, from which it sources the value of its setting. It
is the owner of a persistent value, which it makes available
in a flow object.

The setting value which persists is the one stored in each
component instance at the time a wiring diagram containing
this instance (at the top wiring level) is encapsulated. Then,
in every instance of the resultant composite component type,
the corresponding instance of the Setting Source component
will hold, and source, its persistent setting value. (Note that
this value can be changed after instantiation by the action of
a Transaction Register component, discussed in Section 6.1,
or before encapsulation by a possible command of the
Setting Source component; see Section 5.10.)

The setting value is initialized to a copy of the persistent
value at the time that the component is instantiated from its
component type. (Instantiation is discussed in Section 5.7.)
Strictly speaking, we are not describing a single component
type but an abstract supertype, each of whose instantiating
subtypes initializes to its characteristic value when instan-
tiated.

Avariation of this component, which acts on receipt of an
owner be notified oop message from its flow object, has a
sink and possibly additional sources. Upon receipt of an
owner be notified, the additional sources source the param-
eters of the message, then the sink picks an input Dolt.

Text Source Component. The component shown in FIG.
19 is one subtype of the Setting Source component abstract
supertype, the appearance of whose icon is specialized to
display a short text string. The default value is the empty
string.

Section 4.2 Collection Components

Just as conventional languages have operations to deal
with collections (indexed often, but not necessarily, by
integers), similarly this model has primitive components to
deal with collections.

A collection flow object contains a collection of flow
objects. The wire containing a collection may be thought of
as a “cable” containing a collection of wires. Note that there
is no distinction between a cable containing a collection of
wires and a wire containing a collection flow object with an
isomorphic collection. This property suggests that some
aspects of data semantics can be expressed in program
wiring.

Indexed Collector Component. An Indexed Collector
component, shown in FIG. 20, has n+1 sinks (n>1) and one
source (n=3 in the figure). The first n sinks accept arbitrary
flow objects, and the n+1st sink accepts a collection flow
object (say with m elements). If k is the number of the first
n sinks which are actually wired, the source sources a
collection flow object with k+m elements, where the last m
elements are the elements of the collection arriving at the
n+1st sink. Thus, the n+1st sink is a means by which an
arbitrary number of collector components can be daisy-
chained to produce a collection with an arbitrary number of
elements.

Named Collector Component. A Named Collector is
similar to an indexed collector, except that the collection is
indexed by names, and each of the first n sink connectors has
an associated setting which holds the name with which the
element arriving at the sink is associated in the resulting
collection. (If the setting is absent, the text distinguisher
serves as the index.)

Concatenate Component. A Concatenate component has n
sinks (n>1) and one source. The sinks accept collections, and

US 6,272,672 Bl

31

the source sources the concatenation of the collections. That
is, if the collection at sink number i has elements [e; ;. . .
], then the elements of the output are [e, ;. . . €51, €21
€z o €pe s Sl
Indexed Splitter Component. An Indexed Splitter compo-
nent, shown in FIG. 21, has one sink and n+1 sources, and
performs an inverse function to an indexed collector com-
ponent.

Named Splitter Component. A Named Splitter with n
sources performs an inverse function to a Named Collector
with n+1 sinks (given that the names associated with the n
sources of the splitter are the same as the names associated
with the first n sinks of the collector). It is shown in FIG. 22.
In an assembly tool, each white rectangle in the icon
displays the name setting associated with its source. As well
as acting as the inverse of a collector, a Named Splitter also
can isolate the named instance variables of a flow object, or
the named fields of a data record. Such distinction among the
named components of (1) a collection created by a Named
Collector, (2) an object with named instance variables, or (3)
arecord with named fields arise either from the history of the
data-procedure paradigm or from the classic build-time/run-
time distinction. We are deliberately avoiding such distinc-
tions. (Section 5.9 contains more discussion of such distinc-
tions.)

Some components (the Indexed Splitter being a trivial
example) require collections as inputs. Often, where a
collection of one element is acceptable, the component will
interpret a noncollection arriving at a sink expecting a
collection as a collection of one element. This convention is
to be understood in the following discussions.

Direct Selector Component. A Direct Selector, shown in
FIG. 23, has two sinks and one source. The lower sink
accepts a collection and the upper sink accepts an object
which can be interpreted as an index into the collection (for
example, either an integer or a name). The Direct Selector is
a dependent of both input flow objects, because the selector
will need to recompute its output if either input changes. The
source outputs the element of the selection chosen by the
index.

A variant of this component has an additional source
which makes the component synchronous, rather than asyn-
chronous. The source sources a Dolt; the selection is not
computed and sourced until this Dolt is picked.

Indirect Selector Component. An Indirect Selector, shown
in FIG. 24, works in tandem with another component (of
which there are several examples which will be discussed),
which perform a “choose-1-of-n” function, usually (but not
necessarily) at the user interface. Examples of choose-one
user-interface components are list-box, combo-box, palette,
and radio-button-group components. Menus are also user-
interface elements with a choose-one function.

An Indirect Selector has one sink (accepting a collection)
and two sources. The upper source connects to a choose-one
component (not necessarily directly) and the lower source
sources the selected element of the input collection. The
Indirect Selector becomes a host of the selected element
when it is sourced. (An application of the Indirect Selector
as a host is illustrated in Section 6.6.)

FIG. 25 is a characteristic idiom involving an Indirect
Selector and a choose-one (the choose-one shown in the
figure is a List Box). We shall refer to this idiom, and the
programming strategy which employs it, as event-induced
selection. When an Indirect Selector sinks a collection, it
forwards a new flow object containing the same collection
(this is possible because, as with some other object systems,
the flow object really contains a reference to the collection)

Cimi

10

15

20

25

30

35

40

45

50

55

60

65

32

out the upper source, making itself the new flow object’s
owner.

The collection flow object sourced by the Indirect Selec-
tor source is an instance of a subtype of the collection type.
It contains an additional instance variable which permits
describing a selection on the collection. This flow object
type is called a selected collection. The choose-one compo-
nent, then, projects the selected collection flow object,
including its selection, onto the user interface.

If the Indirect Selector has a setting which specifies an
initial selection, it makes this selection (forwarding the
resulting collection element out the element source), it
expresses this selection in the selected collection flow
object, and it sends a notify dependents message (acted on
by the choose-one component) to the selected collection. If
no initial selection is specified, MO is sourced from the
element source. The selector owns this MO, whereas it does
not own output elements which are selected from input
collections.

When the choose-one component makes a selection (for
example, when a List Box component receives an event
saying that the user has clicked on an element of the list), it
expresses this selection in the selected collection flow object
and sends a notify owner message to this flow object.

If the choose-one component is a user-interface compo-
nent, it needs to know how to display the elements of the
collection on the user interface. This is one function of the
distinguishing ability of the wrapper of each element of the
collection. The choose-one component constructs a collec-
tion of the answers obtained by asking each element of the
collection for a distinguishing name or icon (depending on
the choose-one component or on a setting of the choose-one
component) and it uses this collection of answers for its
display. It must remember the mapping from the distinguish-
ers back to the collection elements, so that it can apply this
mapping when a particular distinguisher is chosen in order
to find the element and express the selection in the selected
collection. (It may also have to remember a permutation
mapping, if the distinguishers must be sorted for presenta-
tion.)

A variant of the Indirect Selector component has an
additional source which makes the component synchronous,
rather than asynchronous. The source sources a Dolt; the
selection is not computed and sourced until this Dolt is
picked.

Event-induced selection is a major strategy for expressing
change in program appearance or behavior in response to
choices the user makes at the user interface. The selector is
the wiring equivalent of the case statement in procedural
languages. In Section 6.3 we shall extend the uses of
selection with a discussion of state-controlled selection.

Direct Multiselector Component. This can be a separate
component or a variant of a Direct Selector component
which is chosen by a setting. It differs from the Direct
Selector in that its selection output sources a subcollection,
not an element, of the input. Accordingly, the indexer input
sinks not a single indexer but a collection of indexers. This
component also has a synchronous variant.

Indirect Multiselector Component. This can be a separate
component or a variant of an Indirect Selector component
which is chosen by a setting. It differs from the Indirect
Selector in that its selection output sources a subcollection,
not an element, of the input. (The selected collection type
accommodates multiple selection.) Accordingly, the collec-
tion output sources the selected collection to “choose-one-
or-several” components, such as List Box components

US 6,272,672 Bl

33

which can handle multiple selections. This component also
has a synchronous variant.

Map Collection Component. A Map Collection compo-
nent, shown in FIG. 26, applies a function to each element
of a collection and outputs the resulting collection of func-
tion results. It has two sinks and two sources. The top
sink-source pair accepts the input collection and sources the
resulting collection. The bottom source-sink pair succes-
sively sources each element of the collection and accepts the
result of applying the function to that element.

When a collection arrives at the collection sink, or when
the component receives a dependent be notified message, the
component iterates over the collection, successively sourc-
ing each element from the element source connector. (A
one-sink, one-source “filter” component, or equivalent wir-
ing diagram, is presumed to be connected to the element
source and sink connectors.) The output of the filter com-
ponent/wiring diagram appears at the element sink, from
which the map collection component incorporates it into the
output collection. It does this by constructing each new
element in the output collection with a copy of the wrapper
of the corresponding element of the input collection. Also,
the wrapper of the output collection is a copy of the wrapper
of the input collection. (Thus, message-send communication
acts directed to the whole collection or to elements of the
collection can span across the Map Collection component.)

The Map Collection component functions as a choose-one
component when the filter component sources Dolts. See the
discussion of the To Dolt component in Section 4.4.

Section 4.3 Window Components

Main Window Component. A Main Window component
communicates with the user-interface management system
of the operating system to manage directly one window and
indirectly the child windows of this window. These compo-
nents manage modal and nonmodal dialogs, and overlapping
and full-screen windows, either by the device of having a
separate component for each or by having a generalized
component with settings. We shall discuss a main window
component which manages an overlapping window.

The Main Window component, shown in FIG. 27, has
three sinks and two sources. The two sources source Dolts;
the top source sources a Dolt which causes the window to be
opened when it is picked, the bottom source sources a Dolt
which causes the window to be closed when it is picked.
These two Dolts are alternately enabled/disabled and dis-
abled/enabled, respectively, depending on whether the win-
dow is closed/open.

The three sinks (from top to bottom) accept (1) a text flow
object for the title bar of the window, (2) a collection of
menus for the menu bar of the window, and (3) a collection
of ports for the child windows. The icon in the picture is
designed to suggest the projection metaphor. A variant of
this component has an additional one or two sinks which
pick Dolts when the window closes (even if closed directly
by the user) and, perhaps, when it opens.

(In an operating system like the Macintosh, the menu
collection appears in the global menu bar when the window
is active, whereas in Windows it appears in the local window
menu bar. It is conceivable that a main window component
for the Macintosh could have two menu-bar sinks, the
second for a local window menu bar.)

Each menu flow object of the menu collection is a
collection of Dolts; the collection wrapper provides a dis-
tinguisher for the text heading of the menu. (More generally,
in order to allow for hierarchical menus: a menu flow object
is a collection whose elements are Dolt flow objects or menu

10

20

25

30

35

40

45

50

55

60

65

34

flow objects.) Each Dolt and collection wrapper in the menu
collection provides a distinguisher for its menu item.

Ports. We shall now discuss ports. Ports are flow objects
which are sourced and owned by the primitive components
which manage the child windows of a main window. The
main window communicates directly with the child compo-
nents using notify owner messages along the port routes.
(There isn’t that much to communicate about, it turns out,
once each child window is instantiated in the user-interface
management system; that instantiation is the principal func-
tion of the protocol between the Main Window component
and each child window component.)

A port defines the size and position of the child window
in the main window managed by the Main Window com-
ponent. In general, a port is a function which maps a
rectangle (the main window rectangle, say) into another
rectangle (the child window rectangle), usually with the
second contained in the first.

Here is one realization of a port. The data of a port is a set
of four integer-triplets, together with a (typically empty) list
of ports. The four triplets define the coordinates of the left,
top, right, and bottom of the child window. Each triplet
(a,b,c) expresses the computation (a/b)+c, where a/b
expresses the position of the respective child window side
relative to the width or height of the main window, then the
displacement ¢ (which can be negative), in appropriate units,
is added. Thus, a child window occupying the full size of the
main window would have the following triplets: Left=(0,1,
0), Top=(0,1,0), Right=(1,1,0), Bottom=(1,1,0). A child win-
dow centered in the main window inset by 10 units on each
side from a half-size rectangle has the following triplets.
Left=(1,4,10), Top=(1,4,10), Right=(3,4,-10), Bottom=(3,
4,-10). A port computes the coordinates of the child win-
dow, given the coordinates of the main window (by con-
vention in most user-interface management systems, the left
and top coordinates of the main window are usually O and O,
and the right and bottom coordinates are the width and
height of the main window).

Since a port is applied to a rectangle and yields a
rectangle, ports are capable of being applied successively.
Thus, in actual fact, what a port computation does is first
apply the ports in the list part of the port, then apply the four
triplets. That is, a port can “remember” the result of the prior
application of several ports. This leads us to a brief digres-
sion, the Map Port component.

Map Port Component. A Map Port component, shown in
FIG. 28, is a filter (one sink, one source) which accepts a
port, applies a port transformation (stored as a port object in
a setting of the component) to that input and outputs the
resulting port, which embodies the successive application of
the setting port followed by the input port.

The Map Port component can also accept a collection of
ports, apply the setting port to each, and output a corre-
sponding collection of ports (again, with copies of the input
wrappers so that message-passes will span the Map Port
component). Thus, a Map Port component can be used to
take a group of child window ports, constructed without
regard for the context of other child windows with which it
will appear, and map this group into a particular subrect-
angle of a main window appropriate to a particular appli-
cation.

Now back to the Main Window component. Because the
collection of child windows of a main window can arise by
using collector components to build collections of collec-
tions, the input to the port sink connector might be a
multilevel collection. The Main Window component flattens
this to a single collection. It iterates across this collection to
obtain its collection of child window ports. Each port

US 6,272,672 Bl

35

provides a route to the child window component (the port’s
owner), and (a means to obtain) the size of the child window.

Variable-format windows can be implemented by running
collections of port groups (each group representing one
alternative format) through selection logic into the port input
(possibly in combination with other, fixed ports) of a Main
Window component. When the Main Window component
receives a flow or a dependents be notified oop message with
respect to its port sink, it refreshes its window using the new
collection of ports.

Child Window Components. FIG. 29 shows an assortment
of child window components. There is a child window
component type for each child window type available in the
operating system’s user-interface management system, plus
some which provide capabilities synthesized from more
primitive capabilities of the user-interface management sys-
tem. Examples of the former might be list boxes, combo
boxes/popup menus, buttons, bitmap displays, and text edit
boxes. Examples of the latter might be child windows for
managing display lists and animation, palettes (horizontal
and vertical), and radio-button groups.

The components shown in FIG. 29 are, from the left,
Horizontal Palette, Vertical Palette, List Box, Button, Text
Edit Box, and Generic. The Generic Child Window compo-
nent, discussed in more detail in Section 6.7, projects an
appropriate display whose format is dependent on the type
of the input flow object.

At minimum, a child window component has a single sink
and a single source. The sink accepts a flow object whose
data is appropriate to the child window, and the source
sources a port flow object. The component has at least one
setting, for the port flow object which defines the rectangle
of the child window.

A principal connection between inside behavior and out-
side behavior is this specification for child window compo-
nents: a child window component is a dependent of its input
flow object; when a flow object arrives at the sink or when
the component receives a dependent be notified message, the
appearance of the user interface is updated to reflect cor-
rectly the new arrival. (In order to minimize flashing, receipt
of an invalidate message from the sink or receipt of MO does
not change the display.)

There might also be other, component-specific connec-
tors. For example, a List Box component has a sink accept-
ing a Dolt which is picked when the selection is double-
clicked, and an Editable Text component can have several
Dolt sources for editing commands such as cut, copy, and
paste.

FIG. 30 shows the port wiring for a window with three
child windows, a List Box, an Entry Field control, and a
Button. (The order of connection to the Collector component
is immaterial.) The Entry Field component can sink a text
flow object. The Button sinks a Dolt. The top sink of the List
Box component sinks a selected collection from an Indirect
Selector. The bottom sink can sink a Dolt which is picked
when a selection is double-clicked (the pick occurs on the
second click, after the first click, which defines the selection,
has been processed).

Menu Component. This component in FIG. 31 can sink a
Dolt or a (possibly hierarchical) collection of Dolts and
sources a Menu flow object whose text distinguisher (i.e.,
menu heading) is the text setting displayed in the white
rectangle. The text distinguishers of the input Dolts and
collections are the command labels in the menu.

Section 4.4 Filter Components

A filter component has one sink and one source; it
performs a particular transformation on the flow object

10

15

20

25

30

35

40

45

50

55

60

65

36

received at the sink and sources the result. Almost always
the result is a new flow object, of which the filter component
is the owner.

File Contents Filter Component. A File Contents filter
sinks a file flow object and sources a new flow object
containing the file contents object. (A file flow object
contains a reference to a file, not the contents of the file.
Typically, it is an encapsulation of a pathname, or some
other operating-system-specific designator. Also, the output
flow object contains a reference to the contents of the file;
whether the whole file contents must be brought into
memory is an implementation and optimization issue and
can depend on the nature, and the dependents, of the output
flow object.)

In FIG. 32 a File Contents filter is connected to a Map
Collection component. A collection of files is the input to the
Map Collection component, and the corresponding collec-
tion of the contents of these files is its output.

Subfiles and Subdirectories Filter Components. Each of
the components in FIG. 33 sources a collection, given a file
flow object at the input which denotes a directory/folder. The
first sources the collection of files in the directory, and the
second sources the collection of directories in the directory.
(A setting of the Subdirectories component selects the option
to include as the first member of the output list the super-
node of the input directory, except when it is the root node.)

Distinguisher-only Filter Component. The component of
FIG. 34 sources a text string flow object whose value is the
text distinguisher of the input flow object. There is a
corresponding variant for the icon distinguisher(s).

Change Distinguisher Filter Component. The component
of FIG. 35 has a setting which stores a string; this string
becomes the distinguisher of the output flow object. The
component passes a copy of its input directly to its output,
with the text distinguisher instance variable of the output
flow object containing the value of the setting. It is by this
means that menus and menu items can be given arbitrary
names. (Note that it would be incorrect not to make a copy
of the input flow object but just to change the value of its
distinguisher, because that would change the value in the
owner’s copy. Also note that making a copy of the input flow
object copies only the wrapper but not the data contained by
the flow object; it makes copies of references to these data.
See FIG. 4 and the discussion in Section 1.2.)

To Dolt Filter Component. The component of FIG. 36 is
a simple filter which sources a new Dolt with a copy of the
wrapper of the input flow object, modified to assure that the
distinguishers of the input wrapper will be unchanged. (This
point is made because, if the input data object is a text string,
its text distinguisher will not typically be a constant; the
value of the text string is the distinguisher. This text value
will be made into a constant in the wrapper of the Dolt,
because the underlying string will no longer be present.)

When a To Dolt component is the filter component used
in connection with a Map Collection component, the two
together can become the equivalent of a choose-one com-
ponent used with an Indirect Selector; this is shown in FIG.
37. By turning an arbitrary collection into a parallel collec-
tion of Dolts, the Map Collection/To Dolt pair permits a
menu in a menu bar to be used as a choose-one popup
user-interface element. (The Map Collection component
does this by changing the server of each new Dolt to the Map
Collection component and by adding a message parameter to
each Dolt which carries the index value associated with that
particular Dolt. Thus, when a Dolt is picked, the Map
Collection component will get a message which will permit
it to express the selection in its input selected collection and

US 6,272,672 Bl

37

send a notify owner message to this collection.)

Section 4.5 Glue Components

Data Change Detector Component. The component of
FIG. 38 has two sinks and one source. A sink-source pair
passes a flow object straight through immediately without
modification of its data. The second sink picks an input Dolt
whenever a flow object arrives at the first sink. (The pick
must occur after control returns from sourcing the flow
object.) This component makes itself a dependent of the flow
object at its top sink, and it also picks the input Dolt when
it receives a dependent be notified oop message from the top
sink.

Pass-through Component. The component of FIG. 39 has
any number of sinks and one source. Whenever a flow object
is received at any sink, it is immediately sourced unmodi-
fied. This rarely used component is a workaround to the rule
that any sink can connect to at most one wire; it permits a
sink to receive inputs from any of several sources.

Register Component. The component of FIG. 40 has two
sinks and two sources. The two sinks are called clocked
input and initialization input. The top source sources a
“strobe” Dolt, and the bottom source sources one of the
inputs. In a variation of this component, another Dolt source,
when picked, initializes the register.

The register is initialized when it receives a stop message
(this is discussed in Section 5.9), or when the initialize Dolt
(not shown in the figure) is picked. When the register is in
the initialized state, the initialization input is passed through
directly to the output. The register leaves the initialized state
when the strobe Dolt is picked, and does not return to the
initialized state until and unless the initialize Dolt is picked
or the stop message is received. Whenever the strobe Dolt is
picked, the flow object at the clocked input is sourced out the
output. Note that the component is not a dependent of the
flow object at either input.

Synchronous variants of components such as the Direct
Selector are, essentially, the asynchronous variants with
Register(s) at their output(s).

Boolean Selector Component. The component of FIG. 41
accepts a Boolean flow object at the middle sink and passes
either the top input or the bottom input to the source
depending on whether the Boolean is true or false, respec-
tively. The output is MO if the middle input is not a Boolean
with the value true or false.

Match Component. The component of FIG. 42 is a
choose-one component (used in connection with an Indirect
Selector) which has no user interface; it performs “table
lookup” functions. The component has two sinks. The
(lower) collection sink connects to an Indirect Selector and
participates in the protocol common on this connection to all
choose-one components. The (upper) argument sink accepts
any flow object, typically a short text string. The function of
the component is to make a selection from the collection
(and communicate that to the Indirect Selector) according to
a “best” match between the elements or distinguishers of the
collection and the argument. The definition of the match
criterion can be influenced by a setting; alternatively, this
discussion can be seen as describing a class of Match
component types, each with different match semantics.

Pick-at-Run Component. The component of FIG. 43 has
one sink, which accepts a Dolt. It picks the Dolt when it
receives a run message (see Section 5.9). Its function is
typically to open windows which open at the start of a
program.

Exit Component. This component has one source, which
sources a Dolt. When the Dolt is picked, execution of the
program containing the component stops and the program is
destroyed.

10

15

20

25

30

35

40

45

50

55

60

65

38

Dolt Sequencer Component. The component of FIG. 44
has any number of sinks and one source. All the sinks accept
Dolts, and the source sources a new Dolt, of which the
component is the owner and Dolt server. When the output
Dolt is picked, the input Dolts are successively picked in a
fixed sequence.

The remaining components discussed in this section are
useful for building composite components which simulate
the message-passing behavior of primitive components.

Send Notify Owner and Send Notify Dependents Filter
Components. These components sink any flow object and
source a Dolt. When the Dolt is picked, a notify owner or
notify dependents message is sent to the input flow object.
These components have variations with additional sinks,
which accept parameters for the message.

Receive Notify Dependents Components. This is a family
of components, each with a different number of source
connectors. Each component in the family has a sink which
accepts any flow object, of which it makes itself a depen-
dent. Also, each component has a second sink for a Dolt,
which is picked when the dependent be notified message is
received from the first sink. The variants of the components
have source connectors for sourcing the parameters of the
received message before the Dolt is picked.

Send Notify Hosts Filter Components. This accepts any
flow object and sources a Dolt. When the Dolt is picked, a
notify hosts message is sent to the input flow object, with the
message name given by a setting of the component. This
component has variations with additional sinks, which
accept parameters for the message.

Receive Notify Hosts Components. This is a family of
components, each with a different number of source con-
nectors. Each component in the family has a sink which
accepts any flow object; the component makes itself a host
of the flow object. Each component also has a sink for a
Dolt, which is picked when the host message, defined by a
setting of the component, is received. The variants of the
components have source connectors for sourcing the param-
eters of the received message before the Dolt is picked.

Section 4.6 An Analysis of a Wiring Diagram

FIG. 45, the same as FIG. 1, is the wiring diagram of the
inside of a composite component, whose outside is shown in
FIG. 46. The component opens a window which navigates a
file hierarchy. There are two child windows, represented by
the two List Box components. The left List Box controls
selection of directories; the right List Box controls selection
of files. There is a notion of a current node in the file
hierarchy; this is initialized to c:, the root. The left List Box
shows the directories below the current node; the right List
Box shows the files below the current node. Double-clicking
the left List Box redefines the current node to be the selected
directory, causing the contents of both List Boxes to change.
(The first element of the directory list designates the super-
node of the current node, except when the current node is the
root.) Double-clicking the right List Box sources the
selected file out the source connector of the composite
component created by encapsulation of this wiring diagram.

The window (whose component is at the upper right of the
figure) will open immediately when the program starts; this
is due to the function of the Pick At Run component. The
text “File Navigator” will appear in the window’s title bar.

The idiom consisting of an Indirect Selector component
connected to a choose-one (in this case, a List Box) com-
ponent, has already been discussed. There are two occur-
rences of this, the one on the left for the collection of
directories below the current node, and the one on the right
for the collection of files below the current node.

US 6,272,672 Bl

39

The current node is the flow object sourced by the lower
source of the left-hand Register component. It is initialized
to “c:”. The collection of directories below the current node
is provided by the Subdirectories filter component.

When the left List Box component is double-clicked, the
Dolt sourced by the upper source of this Register is picked,
and the selected directory, which appears at the upper sink
of the Register, then appears at its output, becoming the new
current node.

The Subfiles filter component provides the collection of
files below the current node to the right-hand List Box
component. When this List Box is double-clicked, the
selected file is output to the Source Connector component.
(Both the Subdirectories and the Subfiles components rec-
ognize pathname strings as well as file flow objects at their
inputs; this is how they initially work with the text input
“c.

The designer might wish to add a button to the window
which, when pushed, has the same function as double-
clicking in the file List Box. The function of the button is
added by wiring the selected file Register Dolt source
connector to the Button component, as in FIG. 47. This
works because the Dolt sourced by the Register flows to all
sinks wired to the Dolt source connector, and any can pick
the Dolt.

This same button might also be used to close the window
after sourcing the selected file. (This approaches the function
of the “OK” button in a file dialog.) In FIG. 48, the Dolt
Sequencer, when the Dolt that it has sourced is picked by the
Button, picks in sequence the Dolts at sink 1, then sink 2. In
this example, the Register is first strobed, then the window
is closed.

On the other hand, the designer might wish either the
double-click or the button-push to strobe the register and
then close the window. The wiring shown in FIG. 49 does
this.

Part 5 Component Forms

The execution of a wiring diagram using an assembly tool
involves the creation of component instances, given their
type descriptions. Therefore, an assembly tool must be able
to store component type descriptions and use them to
instantiate components (i.e., create component instances
from component types). We conclude that, viewed as soft-
ware objects, component type descriptions and component
instances are different. We shall be more specific here about
these differences.

Section 5.1 Data Structure Definitions

We shall define data structures as linear data streams using
syntax definition methods. A syntax definition has the form

definiendum =definiens.

The definiendum is the thing being defined, and the
definiens is the syntax rule which describes how the
definiendum is constructed. Each definiendum appears on
the left side of exactly one definition, and is identified by a
name, consisting of a sequence of upper-case letters
enclosed in corner brackets: <>. The letters are taken, in
column order, from the menu shown in FIG. 50, with not all
columns of the menu needing to be represented. Thus,
<XCTF>is the name executable component type reference.

Each definiens is a formula consisting of terms and
construction symbols. The terms are names appearing some-
where as definienda, or else they are primitives of this
definition process, whose names appear also in corner brack-
ets but are spelled entirely with lower-case letters.

There are four construction rules in the definiens:

1. Concatenation is indicated simply by succession of

terms. That is, a b denotes the sequence: a followed by
b. (There is no construction symbol.)

15

20

25

35

40

45

50

55

60

65

40

2. Alternation is indicated by the vertical bar | between
terms. As an operator, | is interpreted as having a
maximum scope. That is, a ¢ | b d denotes either ac or
bd.

3. Iteration is indicated by an asterisk prefix. That is, *a
denotes an array (or a sequence) of zero or more a. (The
representation of this array is such that it is possible to
find each element and the end of the sequence.)

4. A lower-case x preceding a term defined as an array
denotes an index into the array. Thus, the entire expres-
sion x<XGA>denotes an index into the array called the
executable program array (which is presumed unique);
it does not contain that array. (By index, we mean only
that one element of the array is uniquely denoted; there
is no suggestion how the reference is implemented.)

If text in parentheses appears on the same line as a

definition, it is a remark which does not participate in the
definition.

Section 5.2 The Component Forms

Descriptions of components can exist in several forms.

The form letter distinguishes the descriptions of these forms.

L Three of these forms are component type descriptions.
What they have in common is that they carry the
information (procedure and/or data) which defines the
execution function of a component type.

A type description can exist in its simplest “L” (library)
form in the component library of an assembly tool. In
a library component type description, references to
types exist only as names.

A component type description exists in the L form when
in the library but is transformed into X form when
brought into the wiring workspace of an assembly tool.

A library component type description of a composite
component records the single top-level wiring diagram
inside this component. The description of a composite
component does not encompass the internal wiring
diagrams of any composite components which occur in
this top-level wiring diagram. The components in this
top-level wiring diagram inside the composite compo-
nent are called the subcomponents of the composite
component. In the L form of a component type
description, the types of subcomponents are named and
are presumably defined in an accessible component
library.

X L-form and X-form component descriptions are almost
identical. In an X-form executable component type
description, named references to subcomponent type
descriptions occurring in the L-form are supplemented
by storage references suitable for efficient execution.

A component type description, when in X form in a
computer’s working memory, can be anonymous or
named (it can have no type name or one unique type
name), but any component type description in the L
form which exists in a component library must be
named.

The X-form component type descriptions of all subcom-
ponent types of a program are collected together as an
array. Such an array of X-form component type
descriptions is called an executable program descrip-
tion.

An executable program description (also called an execut-
able program array <XGA>) is not a component type
description but is an array of X-form component type
descriptions. Within an executable program
description, any single X-form component type
description also satisfies the definition of an L-form
description.

US 6,272,672 Bl

41

When an L-form type description is brought into the
wiring workspace of an assembly tool, the X-form
description that it becomes always is an element of an
executable program description array. That is, X-form

component type descriptions exist only as elements of 5

executable program descriptions.

I A component instance is a data structure occurring
during execution which carries the values (more
correctly, references to the values) being processed by
a running program. Component instances are created as
part of a program instance from an executable program
description prior to execution.

E An editable component type description is additional
wiring-diagram information added to an L- or X-form
description to make the L- or X-form type description
suitable for visual examination or modification by a
component assembly tool. Such additional information
includes all assembly-tool appearance information,
such as pictures, component positions, wire routing,
and help facilities.

The remainder of this chapter describes a set of possible
structures for these forms. Each definition section is fol-
lowed by an example.

Section 5.3 Definitions of Library Forms

FIG. 51 sums up the L-form descriptions which will be
discussed in this section. A line leading down from a
definiendum name leads to the definiens for that definien-
dem.

<LCTD>=

10

15

20

25

<permissions><version><XGF><CTF><L.CTOD><LCTND>.

A library component type description begins with
<permissions>, which is discussed in Part 9. This is
followed by <version>, containing possible version and
time-stamp information, a memory reference <XGF>to
the program array <XGA>, a type identification
<CTF>, an outside description <LCTOD>, and an
inside description <LCTND>.

<XGF>=<program memory reference>.

An executable program reference has meaning only in the
X-form (i.e., <XCTD>) variant of <LCTD>; see Sec-
tion 5.5. It is a memory reference to the executable
program array <XGA>itself.

<CTF><type name>x<XGA>.

A component type reference identifies a component type.
It can take different forms in different contexts. <type
name>is empty if the type is anonymous. x<XGA>has
meaning only in the context of an X-form description
of a subcomponent, and is discussed in Section 5.5.

Also, what distinguishes X-form from L-form type
descriptions is that
1. the <XGF>is meaningful only in the X-form, and
2. in X-forms of composite component types, each

<CTF>appearing in the <LMTND=>is elaborated
with some memory-reference information useful for
execution.

X-forms and L-forms of primitive component types are
identical, except that the <XGF>of the X-form is
meaningful.

<LCTOD>=<LKTDA><LRTDA>.

A library component type outside description is a library
sink type description array followed by a library source
type description array. (As noted in Section 1.1, the
description of the outside of any component is simply
an enumeration of its sink and source connectors.)

<LCTND>=<LPTND>|<LMTND>.

A library component type inside description is either a
primitive inside description or a composite inside

30

35

40

45

50

55

60

65

42

description. Note that the preceding outside description
is the same for both.
<LKTDA>=*<sink description object>.

A library sink type description array is an array of <sink
description object>s. Each <sink description
object>stores within it a value which enables any sink
object created from this description to respond to the
receive flow oop message (see Section 3.4). For primi-
tive components, this value is an inherited pointer or
other reference to the procedure for handling this
message. For composite components, this value is an
inherited pointer to the method for handling the receive
flow message, plus an index into the <LSFA>(see
below) of the inside primitive sink connector subcom-
ponent corresponding to this outside sink.

<LRTDA>=*<source description object>.

A library source type description array is an array of
<source description object>s. Each <source description
object>might not occupy space, but needs to exist as a
placeholder; its E-form occupies space.

<LMTND> = <LSFA> (for all inside components)
<LWDA>. (for all inside wires)

There are two arrays in a library composite type inside
description: the subcomponent reference array
<LLSFA>and the wire description array <LWDA>.

<LSFA> = *<LTDF>.

<LTDF> = <CTF> <VA> <LUD>.

<VA> = *<setting value>.

<LUD> = <LRUD> | <L.SUD>.

<LRUD> = x<LRTDA>. (source connector subcomponents)
<LSUD> = *<LWEF>. (all other subcomponents)

The library subcomponent reference array is made up of
library type description references (<LCTDF>s), one for
each subcomponent instance in the top-level wiring
diagram which defines the composite component. Each
<LTDF>has three parts; the <CTF>contains a <type
name>, the <VA>is a possibly empty array containing
(or uniquely referring to) any setting value(s) associ-
ated with this subcomponent occurrence, and the
<LUD=>specifies where the subcomponent’s output
goes in the wiring diagram. This output specification
can take two forms: one form for source connector
subcomponents (<LRUD>), the other form for all other
inside subcomponents (<LSUD>).

In the case of source connector subcomponents, the
<LRUD=>says which outside source connector this
inside source connector subcomponent corresponds to.
In the case of all other subcomponents, the <L.SUD>is
an array (with as many elements as the number of the
component’s source connectors) which will lead to the
wires connected to each source.

<[LWF>=*x<[LWDA>.

(for wires originating at one source) For each subcompo-
nent (which is not a source connector subcomponent)
there is an array of wire references (<LWF>s). There is
one <LWF>in this array for each source connector of
this subcomponent. In turn, each <LWF>contains an
array, with one element of the latter array for each wire

US 6,272,672 Bl

43

leading from the respective source connector. Each
element of this latter array is an index into the wire
description array <LWDA>.

<LWDA>=*<[LWD>.

The wire description array is an array of wire descriptions,
one for each wire in the (top-level) wiring diagram
which defines the inside of the composite component.

<LWD>= x<LSFA>
x<LKTDA>. (sink on terminal subcomponent)

(wire's terminal subcomponent)

Each wire description has two elements, which denote the
subcomponent which sinks it and the index of the sink
connector (on that subcomponent) at which it termi-
nates.

<LPTND>= <stop message behavior>
<idle message behavior>
<run message behavior>
<sink connector invalidated behavior>
<flow received behavior>
<dependent be notified behavior>
<owner be notified behavior>
<complete input response behavior>
*<event-receipt behavior> (each event type)
*<notify hosts behavior> (each message)
*<pick behavior> (each Dolt)
*<command behavior>
<instantiation behavior>.

This definition enumerates what an executable primitive
type inside description must contain; some of these
behaviors might be empty, combined, and/or inherited.
(Note: a method implements a behavior in response to
receipt of the oop message associated with that
method.)

. Implementation of the stop method.

. Implementation of the idle method.

. Implementation of the run method.

Implementation of the sink connector invalidated
method.

. Implementation of the flow received method.

N T

. Implementation of the dependent be notified method.
. Implementation of the owner be notified method.

O J & W

. Implementation of the complete-input-response proce-
dure.

9. For each event type which can be received by the
component, implementation of the event-received
method.

10. For each notify-hosts message which this component
recognizes, the name of the message and the method for
that message. (There is inherited behavior which
receives the notify hosts messages and finds the appro-
priate method, if any.)

11. For each pick message of Dolts of which this com-
ponent is a server, the method of that message.

12. Commands (wiring-time behaviors) are discussed in
Section 5.10.

13. A method for allocating and initializing instance
storage (see Section 5.7) required by each instance of
this primitive component type.

Section 5.4 Example of a Library Form

10

15

20

25

30

35

40

45

50

55

60

65

44

We continue to use the example we have been using in
FIG. 1 and FIG. 45, which show the wiring diagram which
defines a composite component named FileDialog.

Our purpose is to describe the structure of the <LCTD>for
the FileDialog composite component; this is shown in gross
form in FIG. 52. (In these drawings, the data stream reads
from top to bottom. Light outlines provide structural infor-
mation; in addition, heavy rectangles and bold fonts describe
objects which occupy storage. In some methods of
implementation, structural information can also occupy
storage.)

The rectangles labeled LKTDA and LRTDA make up the
pair of arrays which constitute the outside connector
descriptions; there are no sinks and one source.

The inside description, <LMTND>, is a characterization
of the defining wiring diagram (seen in FIG. 1, FIG. 45, and
FIG. 54) sufficient for specification of the component’s
execution behavior. From the definition

<LMTND> = <LSFA>
<LWDA>.

(for all inside components)
(for all inside wires)

we see that it consists of two arrays. The first array
<LSFA>contains type-description-reference elements
<LTDF>of the 14 subcomponents in the internal wiring
diagram. The second array <TWDA> contains one element
<LWD> for each of the 17 wires in the internal wiring
diagram.

The <LSFA> array characterizes the subcomponents of
the defining wiring diagram. It contains 14 elements, cor-
responding to the 14 subcomponents in the defining wiring
diagram. FIG. 53 contains a table showing the 14 subcom-
ponents in the order in which they will appear in <L.SFA>.
(In any real environment, the order of appearance might be
an accidental consequence of the order in which the wiring
diagram was drawn. In particular, there is no significance
that the connector component is last.)

The wiring diagram which defines FileDialog is repeated
in FIG. 54 with the component instances numbered in bold
as in FIG. 53, and the wires numbered (also arbitrarily) in
light italic.

Each of the subcomponents is represented in the <L.SFA>
array by an <LTDF> of the form:

<LTDF>=<CTF> <VA> <LUD>.

<CTF> contains a <type name> used to name the type.
<VA> is empty except for the two TextSources (this is a
simplification; the ResizableWindow also has settings). The
output description <LUD> describes where the output of the
component goes.

<LUD>=x<LRTDA>|*<[WF>. (an abbreviation)

For element 14, the output description is the index
(x<LRTDA>, with the value 1) of the outside source con-
nector corresponding to this source connector component.
For all but element 14, the output description is an array of
wire references <LWF>.

For each subcomponent, the array of <LTWF> has as many
elements as there are source connectors of the subcompo-
nent. Each <LWF> is, in turn, an array which enumerates the
(possibly empty) collection of wires which originate at the
respective source connector. FIG. 55 contains a repetition of
the table of FIG. 53 with additional information (number of
sources) needed to build the <TWF> arrays in the <LUD>
column of FIG. 56.

Note that the <LUD> entry for element 14 of FIG. 56 is
not a list of indexes into the wire-description array
<LWDA>, as all the others are, but denotes the outside

US 6,272,672 Bl

45

source connector to which this inside source connector
subcomponent corresponds. (In this case it is an index into
an array with one element.)

The wire description array <LTWDA> shows, for each of
the 17 inside wires, the number of the terminal subcompo-
nent and the number of the sink on this subcomponent.

<LWD>= x<LSFA>
x<LKTDA>. (sink on terminal subcomponent)

(wire's terminal subcomponent)

FIG. 57 contains the information in the array <LTWDA>.
(It is also an accidental coincidence that connectors are
numbered from top to bottom within a component.)

FIG. 58 consolidates this derivation of the structure of the
FileDialog <LCTD>.

Section 5.5 Definitions of Executable Forms

There are two executable forms of interest.

1. The executable component type description <XCTD>
is a minor variant of <LCTD>, which has been defined
above.

2. The executable program array <XGA> is an array of
<XCTD>.

An L-form component type description is turned into an

X-form by

1. putting a memory reference to the <XGA> in which the
<XCTD> is sitting into the <XGF>, and

2. (for a composite component type only) augmenting the
type name in the <CTF> of each referenced subcom-
ponent type by a memory reference to the X-form
description of that type in the <XGA>.

In an executable program array the X-forms of all the
types referenced (at all wiring levels) in the program are
collected into an array <XGA>, with each type appearing
anywhere in the program occurring in this array exactly
once.

We shall define an X-form component type description
algorithmically, by describing the process of converting an
L-form description into an X-form description. This will
occur as a byproduct of the algorithm which converts the
L-form of a (usually composite) component type represent-
ing a program into an executable program array.

We define two new concepts.

1. The array <XGA> is the result of applying the con-

version algorithm.

2. A “working description” is a type description which is
being converted from an L-form to an X-form descrip-
tion. The conversion algorithm is recursive and, when
being executed, can temporarily produce multiple
working descriptions at one time.

We call the conversion algorithm P(w), where w is a
working description or a type name. To convert the L-form
component type description D to X-form, we perform the
following steps.

1. Create the array <XGA>, initialized empty. Let r be a

memory reference to this <XGA>.

2. Perform P(D).

3. The result is the completed <XGA>. More specifically,
<XGA-> is the executable form of the description of the
program whose top-level component is D. If <XGA>
ends up with n elements, <XGA>[1] contains the
X-form of D. If D is composite, <XGA>[2] to <XGA>
[n] contain the X-forms of all component types which
are referenced, both directly and indirectly, in the
wiring diagram defining the inside of D. Thus, an
executable program array is an array of executable
component type descriptions.

10

15

20

25

30

35

45

50

55

60

65

46

P() is a function which accepts as an argument either a
type name or a working description, and returns an index
into <XGA>. (The variables N, i, and m are local to P().)

The description of P(w) is as follows.

1. (Definition: “Add w to <XGA> at j” means this.
Assume <XGA> has elements 1 . . . n. Create element
n+1, put w in this element, put n+1 into the x<XGA>
slot of the outside <CTF> of w, and put r into the
<XGF> of w. Assign the value n+1 to j; then all
subsequent references to w become references to this
new clement of the array.)

Insure that <XGA> uniquely contains a working descrip-
tion of the type denoted by w, as follows.

a. If w is an anonymous description, add w to <XGA>
at 1. (This can only happen for the first element of
<XGA>, i=1))

b. If w is a type name N: Examine <XGA> for a type
description with name N in the <CTF> preceding its
outside definition. If N is present in <XGA> at index
i, exit P() returning the value i. If N is absent, obtain
from the library the L-form of the type description
with name N, and add the L-form to <XGA> at i.

c. If wis a type description with name N: Examine
<XGA> for a working description with name N in
the <CTF> preceding its outside definition. If N is
present in <XGA> at index i, exit P() returning the
value 1. If N is absent, add w to <XGA> at 1.

2. If w is primitive or is the name of a primitive type, exit
P() returning the value i.

3. If w is composite or is the name of a composite type,
and the type description has k elements in array
<L.SFA> in its inside description, iterate over the array
<LSFA> from 1 to k. Each element of <L.SFA> con-
tains a <CTF> with a <type name>; for each such
element:

a. Perform m=P(<type name>).
b. Put the value m into the x<XGA> slot of the <CTF>.

4. Exit P() returning the value i.

The result of this algorithm is that the X-form of D will
be in <XGA>[1], and (if D is composite) all types directly
or indirectly referenced by the wiring diagram which defines
D will be uniquely present in <XGA>. <XGA> itself is the
executable program description whose top-level wiring dia-
gram is the definition in <XGA>[1].

We have distinguished between the executable form of a
program, which is an <XGA> array, and an X-form of a
component description in the program, which is some ele-
ment of this array. Furthermore, the component from which
the program definition <XGA> was built has its X-form in
element 1 of the array. We call <XGA>[1] the root of the
program definition.

Section 5.6 Example of an Executable Form

In order to illustrate fully the conversion algorithm P(),
we must have as an example a program which is defined on
at least two levels. FIG. 59 shows the wiring diagram of a
hypothetical file content browser, with the components and
wires numbered arbitrarily. The composite component
labeled FileDialog is the example which has been described
in detail in Sections 4.6 and 5.4. The behavior of the
example program is as follows. When the program starts,
two windows open, one with the title “File Navigator”
(opened by the FileDialog composite component), and the
one shown in FIG. 59 with “Contents” in the title bar. The
output of the FileDialog component (component 4 of FIG.
59) is a file flow object, which is passed into a FileContents
filter (component 5 of FIG. 59; see Section 4.4), which

US 6,272,672 Bl

47

sources whatever kind of object is stored in the file as a flow
object. This in turn goes into the generic child window
component (component 6 of FIG. 59; see Section 4.3),
which displays the contents of the file in the window.

Note that in an assembly tool, there is always a topmost
composite component. This is the implied composite com-
ponent whose internal wiring diagram is the top-level wiring
diagram in the tool’s wiring workspace; if execution of the
top-level wiring diagram is attempted, this is the composite
component which is the program. (If the tool has just been
opened and its workspace is empty, the topmost composite
component still exists but has an empty defining wiring
diagram.)

The type of the topmost component in the assembly tool
can be named or anonymous, whereas all other component
type descriptions in the tool and its library are named. (In
general programming languages, an anonymous type is one
referred to in a programming tool by its construction and not
by its name. In the Pascal type definition

OneToThree=1..3
for example, the type 1..3 is anonymous, whereas the type
OneToThree is named.)

An anonymous type at the top level in an assembly tool’s
workspace has a lifetime no longer than the current use
session of the workspace, unless this type is given a unique
name and put into the tool’s component library so that it is
(1) preserved, and (2) made accessible (by means of its
name) for incorporation by the tool into wiring diagrams;
this is the essence of encapsulation.

We can assume that the wiring diagram of FIG. 59 was
drawn after opening up a workspace in an assembly tool, and
defines, therefore, a top-level anonymous type. The L-form
of this type description is summed up by the tables of FIG.
60 and FIG. 61. FIG. 60 shows subcomponents and FIG. 61
shows wires.

FIG. 62 shows the L-form description of the component
defined by the top-level wiring diagram. Our task is to
generate the executable program array <XGA> from this
L-form description of the program’s wiring diagram. We do
this by computing P() with an argument consisting of this
anonymous L-form description. The table of FIG. 63 shows
the progress of this computation. Each line of the table
shows the result of a distinct invocation of the function P().
The column labeled <XGA> shows the <XGA> array after
this invocation and prior to the next invocation (with type
names abbreviated for the sake of space, and elements
preceded by their indexes and separated by commas). The
lines labeled (unchanged) are the result of exiting P() early
because the name in the argument is already present in
<XGA>; the applicable text in the algorithm is “if N is
present in <XGA> at index i, exit P()”. Indentation in the
argument column indicates an invocation of P() within an
already existing invocation of P().

The resulting <XGA> array is shown in FIG. 64. Each
element of the array is an X-form description of the type
shown.

Note that all of the 14 distinct types named directly or
indirectly in the top-level wiring diagram are present exactly
once. In the <L.SFA> array in the inside descriptions of each
of the X-form type descriptions of composite types (i.c., in
elements 1 and 5), each type name is supplemented by an
index into <XGA> pointing to the entry carrying the descrip-
tion for that type name. We show this in FIG. 65 for the
anonymous type description and in FIG. 66 for the FileDia-
log type descriptions. (Note that these X-form structures are
called <XCTD> rather than <LLCTD>. For descriptions of
primitive types, the <XCTD> is the same as the <LCTD>.

20

25

30

35

40

45

50

55

60

65

43

Finally, we show in FIG. 67 the gross structure of the
<XGA> with the subcomponent type references shown by
arrows.

Section 5.7 Definitions of Instance Forms

The executable program array <XGA> carries the infor-
mation sufficient for storing, in an assembly tool or in an
execution environment, the functional description of a pro-
gram. It is our equivalent of a loaded executable file struc-
ture in the conventional procedure-data paradigm. In this
conventional paradigm we can distinguish between a loaded
executable file structure and the structure of a program being
executed from this executable file as follows. (We ignore
dynamic overlay for simplicity.)

The structure of an executing program consists of the
loaded executable file structure plus data structures not
in the loaded executable file which hold user data and
state information during execution.

In the conventional procedure-data paradigm we call this
structure consisting of the executable file plus data a pro-
gram instance. Since the executable file is a read-only data
structure, it is possible to visualize multiple program
instances executing concurrently, all based on the same
executable file.

In the present paradigm we similarly distinguish between
a program description, as <XGA> is above, and an instance
of that description, called a program instance, or program.

Program instances allocate storage for the following data.

1. The program’s pending-action list (see Section 2.2).

2. Storage required by each component instance in the
program, to wit:

a. Information sufficient to determine the type of the
component instance and the identity, if it exists, of
the supercomponent (the composite component con-
taining this component as a subcomponent in its
defining wiring diagram).

b. The flow storage associated with each connector
object of the component instance (see Section 1.1).

c. For primitive component instances which are the
owners of flow objects, storage required by these
flow objects (including the wrapper storage common
to all flow objects; see Section 1.2). (Flow object
storage can be thought to be associated with the
component which is the owner of the flow object, but
it is not necessarily implemented as part of the
owner’s instance storage.)

d. For primitive component instances in general, data
storage required for execution of these primitive
components. In the case of user-interface
components, for example, this would include storage
required to maintain communication with the oper-
ating system’s user-interface management system.

e. For composite component instances, a list of refer-
ences to the subcomponent instances.

We have encountered two new concepts: program
instance and component instance, which we now describe.
FIG. 68 summarizes their syntax definitions.

<IG>=<pending-action list> <IGA>.

<IGA>=*<IC>.

An executable program instance is created from an
executable program description (an <XGA>) by instan-
tiating that description, that is, by creating an <IG>
structure.

The <IG> contains a <pending-action list> plus an array
<IGA> of all the component instances <IC> in the
program. Each component instance is instantiated from
the <XCTD> element of <XGA> which defines the

US 6,272,672 Bl

49

respective component’s type, and the instance contains
a reference to that <XCTD> element in the <XGA>.
Thus, execution of an <IG> requires the presence of
both the <IG> and the <XGA> from which it was
created.

<[C>=<ICO> <ICN>.

<[CO>=x<XGA> x<IGA> <IKA> <IRA>.

<IKA>=*<sink object flow storage>.

<IRA>=*<source object flow storage>.

In parallel with its description structure, a component
instance consists of an outside part followed by an
inside part.

The outside part <ICO> consists of an index x<XGA>
into the program type description array (this identifies
the type of the component), followed by an index
x<IGA> into the component array (this backward ref-
erence identifies the supercomponent, and is not mean-
ingful for <IGA>[1]), followed by an array of flow
storages for the sink objects of the component, fol-
lowed by an array of flow storages for the source
objects of the component.

<ICN>=<IPN>|<IMN>.

<IPN>=<primitive inside instance storage>.

The inside part of a component instance is either a
primitive inside part or a composite inside part. The
primitive inside part is created by the instantiation
behavior of the primitive type inside definition
<LPTND> (or <XPTND>, which is identical), and
includes any initial setting value(s). These setting val-
ues have default values specified by the primitive type
description, but if the instance occurs as an instantia-
tion of a subcomponent of a composite component
type, these default values can be overridden by the
value array <VA> associated with this subcomponent
occurrence.

<IMN>=*x<IGA>.

The composite inside part is an array of indexes into the
component array <IGA>. The array of indexes denotes
the array of subcomponent instances of the component,
and is isomorphic as to number and order of elements
with the subcomponent type description array <L.SFA>
in the component’s type description. Just as the
x<IGA> in the outside <ICO> (above) is a backward
reference to the supercomponent instance, so each
x<IGA> in the inside <IMN> is a forward reference to
its respective subcomponent instance.

The component instances are created at the time the
program instance array is created according to the following
procedure.

We define the recursive function I(t,s) where t (type) is an
index into <XGA> and s (supercomponent) is an index into
<IGA>. I(t,s) instantiates the type <XGA>[t] as a subcom-
ponent of <IGA>[s], adds the instance to <IGA>, and returns
the index in <IGA> occupied by the new instance. (If
<XGA>[t] is composite, it has also added the component’s
subcomponents to <IGA> before it returns.)

To instantiate the program represented by the array
<XGA> we perform the following steps.

1. Create an <IG> and allocate an empty <pending-action

list> and an empty array <IGA> in it.

2. Perform I(1,nil). (“nil” denotes a meaningless index.)

3. The result is an <IG> whose <IGA> is fully populated
with the components of the program.

The description of I(t,s) follows. (The variables C,D,i,j,

k,m,p,,y,z are local to I(t,s).)

1. Let D be the X-form type description <XGA>[t].

Assume D has r sources and k sinks. Let C be the new

20

45

55

60

65

50

component instance under construction. If <IGA>has
components up to index n, let j=n+1. Allocate <IGA>[j]
and assign C to it. (That is, subsequent references to C
will refer to <IGA>[j].)

2. The outside part of C, <ICO>, is built as follows (refer
to the syntax definition of <ICO>).

x<XGA>=t.

x<IGA>=s.

<IKA> is a k-array of <sink object flow storage> with all
elements initialized invalid.

<IRA> is an r-array of <source object flow storage> with
all elements initialized invalid.

3. If D is primitive, the inside part of C is allocated and
initialized by executing the <instantiation behavior>
which is part of the inside definition <LPTND> of D.

4. If D is composite, its inside definition <LMTND>
contains the subcomponent reference array <L.SFA>.
Assume <LSFA> has m elements. (That is, the com-
ponent type D has m subcomponents.) Each of these m
elements is an <CTDF> which contains a <CTF> which
contains an Xx<XGA>, whose value we call y. That is,
for each subcomponent, y is an index into the type
description array which denotes the X-form description
of the type of the respective subcomponent.

Allocate an m-array <IMN> which becomes the inside
part of C. (The values of the elements of <IMN> are not
yet defined.)

Iterate over the <LL.SFA> array, with index p varying from
1 to m. For the pth element whose <CTF> contains
x<XGA> with the value y, perform z=I(y,j). Assign z to
<IMN>[p].

This iteration instantiates the m subcomponents (which
may further instantiate others if any subcomponent is
composite). The y argument of I(y,j) denotes the type of
the subcomponent, and the j argument is the index of
the supercomponent C in <IGA> of the subcomponent
instance to be created.

Note the following consequences of this instantiation

procedure.

1. In the inside instance storage array <IMN> for a
composite component in array position k, all the ele-
ments of <IMN> have values greater than k. (That is,
subcomponent references in the <IGA> array are for-
ward references.)

2. The supercomponent reference x<IGA> in the outside
part of an instance in array position k has a value less
than k. (That is, supercomponent references in the
<IGA> array are backward references.)

3. The <IGA> is ordered as a depth-first traversal of the
instance tree.

4. <IGA>[1] is the (sole) instance of <XGA>[1]. We call
<IGA>[1] the root component of the program.

5. Under this set of definitions, a composite type descrip-
tion must not refer to itself as a subcomponent (at any
level) or else I() will not terminate. This restriction is
the reason recursively defined component types are
treated separately in Part 7. There are alternative type
and instance form definitions and associated functions,
not discussed here, which employ “lazy” instantiation
of certain subcomponents and thus permit the direct
definition of recursive types by self-reference.

Note also that because executable type descriptions are
read-only, it is possible to have a single executable program
description <XGA> with several instances <IGA> instanti-
ated from it.

US 6,272,672 Bl

51

Section 5.8 Example of an Instance Form

We shall discuss the process and result of instantiating the
anonymous file-browser program described in Section 5.6.
The gross structure of the array <XGA> is repeated in FIG.
69.

The table in FIG. 70 shows the parameters of each
invocation of I(t,s) and the state of the array <IGA> after this
invocation adds its element to the array. In the <IGA>
column the appearance of a type name denotes an instance
of that type. Indentation in the I(t,s) column denotes sub-
component instantiation.

The resulting array of 21 component instances has its key
features shown in the table of FIG. 71. The columns are: the
index in the array of the component instance, the index in the
array of the component’s supercomponent, the type of the
component instance, and the indices of the subcomponents
if composite or “p” if primitive.

The two composite instances are at positions 1
(instantiated by I(1,nil)) and 5 (instantiated by I(5,1)) in the
instance array. The anonymous component instance at posi-
tion 1 appears in FIG. 72, and the FileDialog component
instance appears in FIG. 73. Observe the parallels to the
<XCTD> structures shown above in Section 5.6, particularly
in the inside parts.

Finally, we show in FIG. 74 the gross structure of the
instance array in the context of the type definition array to
which it refers. The left column of FIG. 74 is the type
definition array <XGA>. (This array is shown in FIG. 67.)
The right column is the instance array <IGA>. Each arrow
going to the left from an instance to a type description
indicates the type of the instance. The downward arrows on
the right of the instance array point to the subcomponent
instances of the two composite component instances.

Section 5.9 On the Distinction Between “Wiring Time”
and “Run Time”

FIG. 75 employs the projection paradigm to illustrate the
relationships among the component type, component
instance, program type, and program instance forms and the
user interfaces which can occur on these forms in various
contexts. It shows that, using the projection paradigm, the
total process of wiring, debugging, and running a program in
the context of an assembly tool can be seen as a single
application with four different kinds of projections possibly
occurring concurrently.

Having accepted the projection-paradigm view of
(specific components within) applications as projecting
objects onto the user interface, we can see where a dynamic
debugging “source-language animator” fits in this scheme.
As shown in FIG. 75, a source-language animator is a
projector of an object which contains both the execution
(specifically, flow-object and communication-act) state of a
program and wiring-diagram information from the E-form
descriptions, as well as component instance state.

An animator also has “single-step” capabilities which can
pause execution after each communication act in order to
permit inspection of components in the process of event
response. A component inspector projects a component
instance, showing its run-time state, including settings and
flow-object values.

This model of a component editing/execution/animation
environment is developed further in Sections 5.13, 6.8, and
8.2. In Section 5.13 we describe what a wiring workspace
does. In Section 6.8 we develop a uniform approach to
projecting flow objects. In Section 8.2 we focus on the
structure of the assembly tool as an application.

For the above reasoning to hold, components must func-
tion at wiring time. For it to be possible for components to

10

15

20

25

30

35

40

45

50

55

60

65

52

function at wiring time, flows must be occurring at wiring
time. This discussion now answers the question: If flows are
occurring at wiring time, what is the difference between
wiring time and run time?

A program instance can receive the following three mes-
sages from the assembly tool: stop (which can be given at
any time), idle (which must be directly preceded by stop),
and run (which must be directly preceded by idle).

The stop message to a program empties the pending-
action list and sends a stop message to all components,
which put invalid values in the flow storage of all their
connectors; in addition the primitive components put them-
selves in reset state, including settings (waiting for a com-
munication act).

The idle message to a program causes an idle message to
be sent to all primitive components, which causes them to
source whatever flow objects of which they are original
sources. (These are most Dolts and the flow objects sourced
by Setting Source components.) Components receiving
communication acts and events act on them normally.

The run message to a program causes a run message to be
sent to all primitive components, which is responded to by
those few which, by definition, do something specific when
the program starts, for example Pick At Run and Probe
components (see below).

In sum, the difference between the state following the idle
message and the state following the run message is the
picking of a few Dolts, typically those that open application
windows. Wiring operations occur after a stop-idle sequence
(see Section 5.13).

The function IR(p), where p is an <XGA>, is defined as
follows.

1. Perform I(1,nil) in the context of p. Let P be the

resulting program instance.

2. Send, in sequence, the messages stop, idle to P.

3. Source any input flows to the sinks of P.

4. Send run to P.

The application of IR() (“instantiate-run”) to p is called
invoking p.

The Component Invocation component (see Section 6.5)
employs a generalization IR(p,q), where p is an <XGA> and
q is the index of any <XCTD> in the <XGA>.

1. Create a new <IG> and allocate an empty <pending-

action list> and an empty array <IGA> in it.

2. Perform I(q,nil) in the context of p, with the results in

the new <IG>. Let P be the resultant <IG>.

3. Send, in sequence, the messages stop, idle to P.

4. Source any input flows to the sinks of P.

5. Send run to P.

Calls to the unwind-pending procedure from components
in the new <IG> refer to the <pending-action list> attached
to this <IG>.

Section 5.10 Components Which Participate in the Devel-
opment Process

We continue toward clarifying the distinction between
wiring time and running time by discussing two components
which contribute specifically to the development process. To
discuss these components, we must make some assumptions
about how wiring diagrams are built. We assume the exist-
ence of an assembly tool, which can select individual
components in a wiring diagram. When a component is
selected, the list of wiring-time commands appropriate to
that component shows in the tool, perhaps in a list box or a
popup menu. Picking one of the command names invokes a
specific wiring-time behavior of the selected component,
whose purpose is usually to give the user an opportunity to

US 6,272,672 Bl

53

alter a setting of the selected component, typically through
the opening of a dialog box.

Command Component. The Command component,
shown in FIG. 76, is the only component in this group whose
function is seen only at wiring time.

The Command component offers an assembly tool the
opportunity to display commands for a composite compo-
nent. This component defines a command name for the
composite component which contains it. When a wiring
diagram containing a Command component at the top wiring
level is encapsulated, this component’s command name will
appear in the tool as part of the resulting composite com-
ponent’s command list when the composite component is
selected. The Command component has one sink, which
accepts a Dolt. This Dolt is picked when (1) the (outside of
the) composite component is selected and (2) the user picks
the Command component’s command name in the tool. The
command name which shows up in the composite compo-
nent’s command list is the value of a setting of the Com-
mand component; it shows in the icon.

Probe Component. This is a debugging instrument useful
at both wiring and run times. The probe component, shown
in FIG. 77, has one sink. Its function is to project its input
flow object onto a separate flow-object inspector window
specifically associated with this probe instance. The probe
has a wiring-tool command which opens the window
immediately, and the window also opens when the probe
receives a run message.

Section 5.11 Definitions of Editable Forms

An E-form description is additional type-description
information for making wiring diagrams visible in an assem-
bly tool. This information is added as a tail of some part of
an L-form or X-form description, so that an executable
X-form description containing this E-form type description
can simply be truncated to produce an execute-only form.
Following are the parts of L- and X-form descriptions which
can be enhanced by E-form descriptions.

Component types. Each component type requires a
graphic, such as a bitmap, for drawing a picture of the
component. This might or might not include the graphics for
the connectors, depending on the design approach. The
region occupied by the graphic must be described. An
important purpose of this region is to define when the user
has pointed inside the component. In addition, a variety of
help facilities can be associated with the component type.
We modify the definition <LCTD> by adding <ETD> to its
tail as follows.

<LCTD>=<permissions> <version> <XGF> <CTF>
<LCTOD> <LCTND> <ETD>.

Connectors. Each connector on each component must be
accompanied by a region occupied by the connector and by
a point at which wires will begin or end. Each connector’s
region is used to determine when the user has pointed inside
the connector. This can affect drag semantics in the wiring
tool, possibly as follows.

1. Dragging from a point inside a connector defines a new

wire.

2. Dragging from a point inside a component but not
inside a connector moves the whole component, includ-
ing the wires connected to its connectors.

In addition, each connector should have a name, unique
within the component type, and its own help facility. We
modify the definitions of <sink description object> and
<source description object> by adding <EKD> and <ERD>,
respectively, as follows.

<LKTDA>=*<[LKTD>.

<LKTD>=<sink description object > <EKD>.

25

30

35

40

45

50

55

54

<LRTDA>=*<LRTD>.

<LRTD>=<source description object> <ERD>.

Subcomponents. The positions of subcomponents in a
composite component’s wiring diagram are attached to the
respective elements of the subcomponent reference array
<L.SFA>. This element definition, <LTDF>, is augmented by
adding <ESD> as follows.

<LTDF>=<CTF> <VA> <LUD> <ESD>.

Wires. The endpoint coordinates of wires are not carried
with the wires but can be inferred from the identity of the
two connectors identified with each wire in the type descrip-
tion. This information should not be duplicated in the wires.
However, each wire must carry routing heuristics which help
to draw the wire regardless of the repositioning of its
endpoints. We modify the definition of <LWD> by adding
<EWD> as follows.

<[LWD>=x<LSFA> x<[LKTDA> <EWD>.

We now discuss briefly each of these E-form extensions.

<ETD>=<type graphic> <graphic region> <type help>.

The <type graphic> is a picture of the outside of the

component type. The <graphic region> defines what
points are inside the picture and what points are not.
Both are positioned with respect to an arbitrary point
called the origin of the component.

<EKD> = <connector point> <connector region>
<connector name> <connector help>.

<ERD> = <connector point><connector region>
<connector name> <connector help>.

In the scheme described here, the graphic associated with
each sink and source is part of the type graphic, but the
coordinates and regions of the sinks and sources are
associated, respectively, with the connectors. The
<connector point> and <connector region> are with
respect to the origin of the component. Alternatively,
sink and source graphics can be inherited by <EKD>
and <ERD>, respectively, and not explicitly included in
a component’s <type graphic>.

<ESD>=<subcomponent origin position>.

The origin position of each subcomponent is with respect
to a fixed origin point for the whole wiring diagram.

<EWD>=*<vertex>.

A wire description is an array of vertices. If the array is
empty the wire is drawn as a straight line. Otherwise,
the wire appears to be a connected series of straight
runs, from source to first vertex, from vertex to vertex,
and from last vertex to sink. A <vertex> contains a
point value (with fractional x and y values possible)
and an identifier which specifies how the point is to be
interpreted in the positioning of the vertex. Three
values of the identifier are (1) fixed displacement from
source, (2) fixed displacement from sink, (3) propor-
tional ratio in rectangle whose corners are defined by
source and sink.

Note that the graphics for the outside of any component
type are defined by <ETD>, <EKD>, and <ERD>, whereas
the graphics for the inside of a composite component type
are found as follows.

1. The position of the origin of each subcomponent’s
graphic in the wiring diagram is found in that subcom-
ponent’s <ESD>.

2. The subcomponent’s icon and region are found in the
<ETD> for the type of the subcomponent.

3. Wire end-point positioning information is accessed by
starting at the subcomponent containing the source
connector(s) sourcing the wire(s) in question.

US 6,272,672 Bl

55

a. To find the coordinate of the (source) starting point
of the wire, go to the sourcing subcomponent’s type
description and add the <connector point> for the
source connector in question to the sourcing sub-
component’s origin.

b. To find the coordinate of the (sink) ending point of
the wire, find the identity of the sinking component
and of that component’s sink connector from the
wire’s <LWD>. Then add the <connector point> for
the sink connector in question to the sinking sub-
component’s origin.

4. The information for routing a wire between its end

points is in the wire’s <EWD>.

Section 5.12 Example of an Editable Form

FIG. 78 shows the inside of the root component of the file
content browser program, with the component icons labeled
with their origin positions in a pixel-based coordinate sys-
tem.

The wires are all straight-line runs, so each wire’s
<EWD> array is empty. FIG. 79 shows how the anonymous
<XCTD> shown in FIG. 65 is modified with the addition of
E-form data.

Section 5.13 What the Wiring Workspace Does

The wiring workspace of an assembly tool is a
“document-oriented” application (that is, it maintains an
object and offers projection(s) of this object); the document
is an <XGA>. If the <XGA> contains n X-form type
description elements (<XCTD=>s), then the application has
the potential to open n wiring-diagram windows, one on
each <XCTD)>.

The two-letter codes xL in the following paragraphs refer
to the licenses discussed in Section 9.1.

Creating a workspace. There are two ways to create a
workspace, corresponding to the New and Open . . . File
menu items of almost all document-oriented applications.

1. Open a new, empty workspace.

2. Open a workspace on a named <L.CTD> which exists

in the library of the assembly tool. (Requires OL.)

Opening a new, empty wiring workspace creates an
<XGA> with n=1; <XGA>[1] is anonymous and contains no
wires and no subcomponents. <XGA> is instantiated, pro-
ducing an empty program. A window opens to project
<XGA>[1]; it has no components and no wiring in it.

Opening a workspace on an existing type description
follows the process described in Section 5.5.

1. Obtain the designated <LLCTD>; call it D.

2. Create an empty <XGA>.

3. Perform P(D) with respect to this <XGA>.

4. Instantiate <XGA> and send stop-idle to the program.

5. Open a window to project <XGA>[1]. (<XGA>[1] is

named and is the X-form of D.)

Editing wiring diagrams. Editing a wiring diagram is done
by performing user-interface operations in one of the win-
dows projecting one of the <XCTD> in the <XGA>. (A
detailed description of a workable set of user-interface
actions for editing wiring diagrams is given in Section 6.8.)

As a matter of good practice, only anonymous type
descriptions should be modifiable. That is, only a window
projecting <XGA>[1] can be edited, and then only when this
<XGA>[1] is anonymous. This policy exists because many
type descriptions in the library might refer to a particular
named type description, so the modification of this named
description should be a carefully considered act. Here is how
a named description can be modified.

1. Open a workspace on the named (composite) compo-

nent type (requires OL). This opens a window on the

wiring diagram defining the component.

10

15

25

30

35

40

45

50

55

60

65

56

2. Perform a “Make anonymous” operation on the work-
space (requires DL). This removes the name from the
<CTF> on the outside of <XGA>[1].

3. Modify only the wiring diagram which is a projection
of <XGA>[1].

4. Encapsulate the workspace. As part of the encapsulate
operation, the user is asked what name to give the new
type description. (There might be a default suggestion
which is the original name.) When this name conflicts
with an existing library name, the user is asked whether
the new type description is to replace the existing one.
(Some input-output consistency checking between the
existing description and the new description should be
performed to help the user answer the question.) Only
if the user answers “yes” should the replacement be
made.

Encapsulation. Encapsulation is an operation performed

on a wiring workspace. All it does is

1. put a type name in the <CTF> on the outside of
<XGA>[1] (which must have been anonymous) and

2. put this <XCTD> into the component library.

(Strictly speaking, the <XCTD> in <XGA>[1] is suitable
as an <LCTD> without modification, but compression of
sparse arrays and nulling out of memory references is
desirable for reasons of efficiency, aesthetics and/or
security.)

Modifying a wiring diagram. (All these operations require
WL.) Given the restriction stated above on which projection
windows will accept modifications of wiring diagrams, here
is how these modifications are effected. (See Section 5.3 for
structure definitions.)

Wire deletion. There exists an index w such that the wire
being deleted is a projection of <LWDA>[w] inside <XGA>
[1]. (Let D denote <XGA>[1.])

1. Scan the <LL.SFA> inside D, looking for wire references
to w in each <LWF>. Null out each such reference; do
not compress the <LSUD> array. (Null is a meaningless
element which replaces the meaningful one. It is rec-
ognizable as not processable and occupies one element
of an array.)

2. Put null in <LWDA>[w]; do not compress <TWDA>.

3. To the sink connector formerly connected to the
removed wire, send the receive flow message with a
reference to MO as a message parameter. When control
returns, call the program’s unwind pending procedure.

Component deletion. A component can be deleted only
after all the wires connected to it have been deleted.
(Deletion of all connecting wires can be done as part of the
component deletion, if the user confirms that he wishes this
done.) There exists an index s such that the component being
deleted is a projection of <LSFA>[s] inside <XGA>[1]
(called D).

1. Put null in <L.SFA>[s]; do not compress <[.SFA>.

2. If the component being deleted is a connector
component, the respective element of <LKTDA> or
<LRTDA> must be nulled out; do not compress the
array.

3. Do not remove any element of <XGA>, even if the
removal of this component results in there being an
<XCTD> in <XGA> with no references to it.

Wire addition.

1. Expand the <LTWDA> by one element to size w, and put
the new <LWD> into this new slot w.

2. For subcomponent s and source r within this subcom-
ponent which connects to this new wire, add w at the
end of the wire reference array <LSFA>[s] [r].

US 6,272,672 Bl

57

3. Let f be a copy of the flow object reference in flow
storage of the source connector connected to the new
wire. If, and only if, f is valid, send the receive flow
message, with f as a message parameter, to the sink
connector connected to the new wire. When control
returns, call the program’s unwind pending procedure.

Component addition.

1. Expand the <LSFA> by one element to size s, and put
the new <LTDF> into this new slot s.

2. Let t be the type name in the new <LCTDF>. Perform
x=P(t). (See Section 5.5.)

3. If the component being added is a connector
component, <LKTDA> or <LRTDA> must be
expanded by one element. This new last element, if it
is a <sink description object>, must refer to subcom-
ponent s.

4. For each <IGA> referring to this <XGA> add an
instance of the component type as follows. In <IGA>
[1] expand the <IMN> by one element to size s, and put
the result of I(x,1) into this slot.

Opening a projection on a subcomponent. Select the
subcomponent and perform a “Zoom in” command (requires
OL). The assembly tool finds the <XCTD> to which this
subcomponent refers and opens a window projecting this
<XCTD> (or brings to the top an already open window
projecting this <XCTD>). (See Section 6.8 for a design
sketch of such a projection.)

Running a program. Perform the “Run” command for the
workspace (requires RL for all types in <XGA>). The
assembly tool sends stop, idle, run in succession to the
instance (i.c., to all components in the instance.).

Part 6 Using Flow Objects for Control

The subject of this part is a design to minimize the
distinction between data and control. The way we put this
design into practice is to

1. express control functions in the software as objects,

2. put wrappers on these objects (and call them control
flow objects),

3. define components which explicitly employ these con-
trol flow objects, and

4. employ wiring, in particular selection, to manage the

flow of these control flow objects.

The Dolt (Section 1.5) is a simple and important control
flow object (see Section 6.3 below for an example). Also, the
port may be thought of as a control flow object; in Section
4.3 we briefly alluded to this design in the programming of
variable-format windows. In this part we shall illustrate this
design in several new ways.

Section 6.1 Transactions

A transaction is the life cycle of a transaction object in the
oop sense. A transaction object is instantiated on an under-
lying object. Implementation details aside, a transaction
object contains only two instance variables, a reference to
the underlying object and an object, called the transaction’s
current object. (If the underlying object is a flow object, the
current object is the underlying object’s data object, exclud-
ing the underlying object’s wrapper.) When the transaction
object is instantiated, the current object is instantiated as an
object of the same type as the underlying object (or the
underlying object’s data object) whose instance variables are
copies of the instance variables of the underlying object.

There are two ways the life of a transaction object can
end: the transaction is either confirmed (the result of sending
the transaction object a confirm oop message) or aborted

10

15

20

25

30

35

40

45

50

55

60

65

58

(the result of sending the transaction object an abort oop
message). See FIG. 80. The response to the abort message is
to destroy the current object and the transaction object,
without changing the underlying object. The response to the
confirm message is to replace the corresponding instance
variables of the underlying object by the instance variables
of the current object (without altering the identity of the
underlying object), and then to destroy the current object and
the transaction object. (As a possible optimization, only the
instance variables whose values have changed need be
replaced.)

Transaction Register Component. The component shown
in FIG. 81 instantiates and manages a transaction object, of
whose current object it is the owner. The component has five
sinks and five sources. The top two sinks and sources behave
like a register which stores a transaction object. The top two
sinks are called Replace and Initialize. The top two sources
are called Strobe and Output. The bottom three sink-source
pairs sink and source Dolts. These three sink-source pairs
are called Open, Confirm, and Abort.

When the Dolt sourced by the Open source is picked, a
transaction object is instantiated on the flow object appear-
ing at the Initialize (the second) sink. The current object of
this transaction object is then wrapped and sourced from the
Output (the second) source, a Dolt is sourced from the
Strobe (the first) source, and the Dolt at the Open sink is
picked. (This pick can be used to open a dialog window.)
Subsequently, picks of the Strobe Dolt cause the input on the
Replace (the first) sink to replace the current object in the
transaction object, and the current object is sent a notify
dependents oop message.

Note that there are two ways the current object can be
modified. In both of these cases, each dependent of the
current object receives a dependent be notified oop message
after the modification.

1. Certain components which sink the current object, such
as projectors (described below), directly modify the
Output flow object, after which they send the Output
flow object a notify owner oop message. In response to
this, the Transaction Register component sends a notify
dependents oop message to the Output flow object.

2. As described above, the (data object of the) input at the
Replace sink replaces the current object, after which the
component sends the Output flow object a notify
dependents oop message. (This approach is unsafe if
there is a wiring error; it is not normally used.)

The transaction’s current object output remains in exist-
ence until the Dolt sourced by either the Confirm or the
Abort source is picked, at which time the transaction is
confirmed or aborted. If the Confirm Dolt is picked, the
transaction is confirmed, the underlying object (at the Ini-
tialize sink) is sent a notify owner oop message, and the Dolt
at the Confirm sink is picked. If the Abort Dolt is picked, the
transaction is aborted and the Dolt at the Abort sink is
picked. (The Confirm and Abort sinks can both be wired to
the Close Dolt source of a dialog window component so
either one will close the window.)

FIG. 82 illustrates the use of a Transaction Register
component in the construction of a composite component
which opens a dialog which navigates a directory hierarchy
to modify an input directory node object. The dialog opens
when the Dolt sourced by the Open source is picked. Note
the suggestion that the Dolts sourced by the Open, Confirm,
and Abort sources have default text distinguishers (such as
“Open”, “Confirm”, and “Abort”). Thus, the commands
under the “End” menu in the window will have suggestive
default labels.

US 6,272,672 Bl

59

File Transaction Register Component. The component
shown in FIG. 83 is analogous to a Transaction Register
component, except that the input (at the second sink) must
be a file flow object (not the contents of a file), and the
output is the current object of a transaction object on the
contents of the file flow object. The component is the owner
of the current object. The top sink accepts a translation
control flow object (not discussed here) which manages the
bidirectional mapping between the file contents and the
current object of the internal transaction object, seen at the
second source. The top source (called “Consistent”) sources
a Boolean flow object. This Boolean is set to false when the
component receives an owner be notified or a dependent be
notified oop message (with respect to the second source or
sink). It is set to true when either the Open, Save, Close, or
Revert output is picked and the file operation completes
successfully.

Section 6.2 Dialog Projectors

A projector is an object (in the oop sense) which mediates
between a flow object to be displayed and the user interface,
and which controls (1) the flow object’s projection onto the
user interface and (2) the modification of the flow object
arising from user behavior at the user interface.

Open Dialog Component. The component shown in FIG.
84 has three sinks and one source. The top sink accepts any
flow object which is openable. An openable flow object is
one which understands an opening message (such as
“openDialog”), which causes a dialog to open on the object.
The source sources a Dolt, which, when picked, opens the
input flow object. The second and third sinks sink Dolts. If
the user accepts the dialog (e.g., the “OK” button is pushed),
the Dolt at the second sink (called “Confirm”) is picked after
the dialog closes. If the user cancels the dialog, (e.g., the
“Cancel” button is pushed), the Dolt at the third sink (called
“Abort”) is picked after the dialog closes.

The meaning of a dialog opening on an object is this. A
dialog is viewed as a projection screen on which the instance
variables of the input object (excluding the wrapper) are
projected, in keeping with the projection paradigm. Any
editing change the user makes in the dialog (1) causes the
respective instance variable of the input flow object to be
changed immediately and (2) causes the input flow object to
be sent a notify owner oop message.

FIG. 85 shows a characteristic idiom by means of which
the opening of a dialog is turned into a transaction on the
“Input Flow Object.”

Picking the “Open Dolt” creates a transaction object and
then opens a dialog on its current object. Editing changes
made by the user are reflected back into the current object
immediately and then to the dependents, if any, of the
current object. (The Open Dialog component is a dependent
of the current object, but it does not react to the dependent
be notified it receives because it is the sender of the notify
owner; see Section 1.9.) After the dialog is closed by either
confirming or aborting, the transaction is similarly con-
firmed or aborted, and the Input Flow Object is, respectively,
changed or unchanged.

Finding the Default Dialog Projector. What remains to be
described is how the form of the dialog is determined, given
the input flow object to the Open Dialog component. The
following presents one approach. There is an abstract class,
call it DialogProjector, which has a variety of instantiating
subclasses such as DialogResourceProjector,
DialogltemProjector, and DialogStringProjector. Each of
these subclasses mechanizes a different way to define a
dialog. For example, DialogResourceProjector has (1)
instance variables which name a resource (typically in a

20

25

30

35

40

45

50

55

60

65

60

resource file) which defines the dialog resource format, and
(2) instance variables which describe the bidirectional cor-
respondence between the items of the dialog resource and
the instance variables of the underlying object. Dialogltem-
Projector defines the form of a dialog using a collection of
instances of the instantiating subclasses of the abstract class
Dialogltem, such as DialogEditltem, Dialoglntegerltem,
and DialogListBoxItem. DialogStringProjector opens a
generic text editing dialog on the underlying string. Thus,
different mechanisms for how dialogs are defined are asso-
ciated with each DialogProjector subclass, but specific dia-
log definitions using a particular mechanism are associated
with specific instances of these DialogProjector subclasses.

For each openable flow object class (i.e., a flow object
class whose instances can respond to the openDialog
message) there is somewhere an instance of a subclass of
DialogProjector which this openable flow object class can
find. This DialogProjector subclass instance, called the
default dialog projector, uniquely defines a dialog for each
instance of the openable flow object class. The Dialog-
Projector subclass instance might be found in a class vari-
able of the openable flow object class, or it might be found
in a global dictionary which maps openable flow object
classes into DialogProjector subclass instances. However
this dialogProjectorlnstance is found, the outcome is that the
message (as expressed in Smalltalk)

openableFlowObject openDialog
is executed as

dialogProjectorInstance openOn: openableFlowObject
where the message openOn: is understood by all Dialog-
Projector subclass instances. The openOn: message opens
the dialogProjectorlnstance-determined dialog on openable-
FlowObject.

Open Dialog Projector Component. The generalization of
the Open Dialog component shown in FIG. 86 permits using
the DialogProjector mechanism described above to define
multiple dialog formats on the same openable object. The
open Dialog Projector component behaves identically to the
Open Dialog component if the former’s first sink has no
input. (That is, if the first sink has no input or this input is
MO, the default dialog projector is used as dialogProjector-
Instance in the above message.) If there is an input at the first
sink, this input is used as dialogProjectorInstance in the
above message. That is, if inputl and input2 are the data of
the flow objects at the top and second sinks, respectively,
then picking the output Dolt sends the message

inputl openOn: input2.

Note that the components described so far in this chapter
provide a controlled exception to the normal left-to-right
flow rule. They do this in a way which can maintain
consistency of data across a wiring diagram. The following
principle is basic to this mechanism of right-to-left change
propagation.

When a right-to-left change originating from user behav-
ior is to be made (as could happen with the Open Dialog
component), this change is not made as a right-to-left flow,
but goes directly to the flow object being projected, permit-
ting orderly left-to-right updating of dependencies using the
notify dependents mechanisms.

This asymmetry between the mechanization of left-to-
right and right-to-left change propagation is basic to the
invention. It uses owner and dependent relationships to
implement tight, consistent, bidirectional coupling between
users and data without the necessity for introducing the
concept of the right-to-left flow, which concept brings with
it many difficult design problems. (Section 6.4 formalizes
this observation.)

US 6,272,672 Bl

61

Section 6.3 An Example of Branching

We now consider how to wire the Open command seen on
the File menu of a single-window document-oriented appli-
cation (i.e., one which does not open a new window each
time a new document is opened).

FIG. 87 shows a first approximation to the required wiring
diagram. Note the use of the Transaction-Dialog idiom.
Picking the Open command in the File menu opens a
Standard File Open dialog which, if confirmed, changes the
file object owned by the Document Path component to the
new file object chosen by the user. (The File Transaction
Register component is a dependent of its input; its response
is to set Consistent to false.) If the dialog is confirmed, the
Dolt at its confirm sink is then picked, which ultimately
causes the File Transaction Register component to close the
old file (if it exists) and open a new file; this sets Consistent
to true.

What needs to be added to this diagram is a facility which,
if the old file needs to be saved before it is closed, gives the
user this option. This is the purpose of the Consistent
Boolean output at the top source of the File Transaction
Register component. In FIG. 88 we add this facility by
interposing a composite component, to be described,
between the Transaction Register’s Open Dolt source and
the File menu. This component does the following when its
output Dolt is picked.

1. If the file is consistent (it does not need to be saved),
the Dolt at the open sink is picked directly. This is what
FIG. 87 does.

2. If the file is inconsistent and therefore may need to be
saved, the component opens a question dialog with the
three buttons Yes, No, and Cancel and the question:
“Do you want to save the old file before opening a new
file?”

a. If the user picks Yes, the question dialog closes, the
Dolt at the save sink is picked, then the Dolt at the
open sink is picked.

b. If the user picks No, the question dialog closes and
the Dolt at the open sink is picked.

c. If the user picks Cancel, the question dialog closes
and no input Dolt is picked.

We now describe the wiring diagram inside this new
component.

We assume the existence of a Question Box component,
as shown in FIG. 89, which opens and closes a dialog using
the Dolts at the two sources, and which accepts on the two
sinks text for a question and a collection of Dolts which map
into a parallel collection of buttons.

The definition of the new component is shown in FIG. 90.
The wiring is complete except that the text input to the
question box is not shown.

If the Consistent Boolean (eq input) is true, the selector is
in the top position, and it is the Dolt which comes into the
open input which goes out the Open output and is therefore
picked in the File menu. As a result, when File/Open is
picked, the open file dialog opens directly.

If the Consistent Boolean is false, the selector is in the
bottom position, and when the Open command of the File
menu is picked, the question box opens. There are now three
cases.

1. If the Cancel button is pushed, the question box closes.

Nothing else happens.

2. If the No button is pushed, first the question box closes,
then the Dolt at the open input is picked.

3. If the Yes button is pushed, first the question box closes,
then the Dolt at the save input is picked (saving the
file), then the Dolt at the open input is picked.

10

15

20

25

30

35

40

45

50

55

60

65

62

(Note the use of top-down design practice in the example,
in which the application of a component is visualized before
the component is created.)

Section 6.4 Coupling Protocol

Note that the basic mechanism in the preceding example
for changing behavior in response to status information is
selection of Dolts. This is an important difference from
procedural programs containing branches. In the wiring
conceptual model, behavior change has two parts.

1. In the left-to-right routing part, the Dolt whose server
embodies the desired behavior is first routed to the
sender of the pick.

2. In the right-to-left message-passing part, sending a pick
then initiates the chosen server behavior.

Note also that the cancel behaviors work as they should.

The above two-part protocol (left-to-right routing, right-
to-left message passing) is related to the characteristic
four-part coupling protocol which couples changes in inter-
nal data to appearance changes at the user interface or to
recomputations in dependent components.

1. In a left-to-right routing part, (a reference to) a flow
object flows from the owner of the flow object to the
sink of a component which can change the data of the
flow object.

2. If this component is to change the data, it does this by
direct modification (by means of oop messages, of
course). It is able to do that because it has a reference
to the flow object in its sink flow storage.

3. In a right-to-left message-passing part, the component
causing the change sends (via the flow object) an owner
be notified oop message to the flow object’s owner.

4. In a left-to-right message-passing part, the owner sends
(via the flow object) a dependent be notified oop
message to each dependent, which then takes a look at
the new data. (Note that, even if the component which
changed the data is a dependent, its response to the
message is blocked; see Section 1.9.)

Section 6.5 Component Invocation Components

In the program definition structure which has been
described so far, there is a strict correspondence between
window components in the program and windows which can
appear on the user interface at run time. This limitation
raises the question: How does one create programs (like
ordinary text editors) which can open a (theoretically)
unlimited number of windows? An answer lies in the defi-
nition of another kind of control flow object.

Component Description Component. The component
shown in FIG. 91 has as a setting a component type name,
which shows in the white rectangle. When this component is
added to a wiring diagram or when the setting is changed,
the P() function (see Section 5.5) makes sure that the
<XCTD> for the named type (and also for the types of its
subcomponents) is also in the <XGA>. This <XCTD> (i.e.,
a reference to this <XCTD>), wrapped as a flow object, is
sourced by the component.

Note that when the Component Description component is
instantiated, no instance is made of the type named by its
setting.

(We can also imagine a filter component without the
setting; it takes as input a text string which is a component
type name, applies P() to the type definition, directly
sourcing the resulting <XCTD> flow object. Such a com-
ponent could function within the environment of an assem-
bly tool but not in the absence of a library. Supplying such
a component and a component library with an end-user
application would be analogous to supplying the Smalltalk

US 6,272,672 Bl

63

compiler and class library with a Smalltalk end-user
application, not considered to be an economical practice.)

Component Invocation Component. The component
shown in FIG. 92 sinks an <XCTD> flow object at its top
sink and sources a Dolt from its top source. When the Dolt
is picked, the component description is invoked (see Section
5.9). (The resulting program instance is distinct from the
program containing the Component Invocation component.)

The invocation of the <XCTD> is particularized as fol-
lows: after control returns from sending the idle message
and before the run message is sent to the program, the
integer-indexed collection (if any) at the second sink of the
component is split and its elements are sourced to the
respective sinks of the program. (The use of collections for
inputs and outputs is for the sake of presentation only, and
we assume compatibility of collections, except as follows: if
the input is not an integer-indexed collection, it is sent
directly to the first sink, if it exists, of the program.) After
control returns from sending the run message, the outputs of
the program (if any) are collected into an indexed collection
and sourced to any sink wired to the second source of the
component. (Note that any ownership of output flow objects
remains in the program and is not transferred to the Com-
ponent Invocation component.) Then, the Dolt at the third
sink is picked. After control from this pick returns, control
from the original pick is returned.

(There are options regarding the timing of the destruction
of the program. In the most general case, the component
creates new programs without destroying old ones, and each
subprogram is either destroyed when the main program is
destroyed or else is responsible for its own destruction by
means of an Exit component. Another possibility is that the
Component Invocation component destroys a previous pro-
gram immediately before creating a new one. In this latter
case, any outputs must be invalidated before destruction by
initiating an MO flow.)

If the component description at the first sink contains a
window opened by a Pick At Run component, each pick of
the Dolt sourced by the top source will create a new program
instance which will open a new window.

Note that applying event-induced selection to program
description flow objects is the basis of operating-system-
level application-launch functions found in such facilities as
the Macintosh Finder and the Windows Program Manager.
This operating-system situation with multiple applications
running is analogous to the assembly tool situation, dis-
cussed in Section 5.9, with multiple types of projections
going on concurrently. In both cases, one sees no essential
distinction between concurrent multiple applications (each
managing its own projection) and a single program spawn-
ing multiple subprograms, each with its own style of pro-
jection.

Section 6.6 Tools

This section describes a group of components which work
with flow objects, called tools, whose interaction with the
user interface is procedural.

Display List Child Window Component. This component,
shown in FIG. 93, is being presented for expository reasons;
it will be superseded in Section 6.7. The component’s source
connector sources a port flow object. Its sink connector sinks
a control flow object which is one of a variety of drawing
tools.

The function of the Display List component is to maintain
in its child window of the user interface a set of figures
drawn by objects in a display list maintained by the com-
ponent. In addition to the flow storage of its connectors, the
component has storage for the display list (an indexed

20

25

30

35

40

45

50

55

60

65

64

collection of display objects) and for a permutation list (an
indexed collection of integers which expresses the stacking
order of the display objects).

The component refreshes its child window by sequencing
through the permutation list, thereby obtaining in bottom-
to-top stacking order a sequence of indices of the display
objects in the display list. In this sequence, the component
sends the same message to each display object telling it to
display itself in the child window. Each display object is an
instance of a subclass of an abstract class DisplayObject.
Each instantiating subclass of DisplayObject draws one type
of figure (rectangle, line, etc.), and each of its instances
stores information about the location, size, and shape of the
figure in the child window.

There is also an abstract class DrawingTool with a sepa-
rate instantiating subclass corresponding to each separate
instantiating subclass of DisplayObject. In effect, each
DrawingTool subclass instance can instantiate a display
object from the corresponding Display Object subclass.
There is one additional instantiating subclass of
DrawingTool, called SelectTool. The DrawingTool sub-
classes may be thought of as the things which one sees in the
palette of an object-oriented drawing program: there is an
arrow (selection tool) and a group of tools for drawing
specific figures: lines, rectangles, ellipses, etc.

Drawing Tool Components. For each instantiating sub-
class of DrawingTool, there is a separate drawing tool
component. A representative set of drawing tool components
is shown in FIG. 94. Each drawing tool component has one
source connector, and its function is to source an instance of
its respective DrawingTool subclass.

An object-oriented drawing application could be realized
by building a main window with (at minimum) a palette and
a display list child window. FIG. 95 illustrates this applica-
tion of event-induced selection to drawing tool control flow
objects. In FIG. 95 there is a Drawing Tool component for
each tool to be presented in the palette; these are grouped
into a collection by one or more Indexed Collector compo-
nents. An Indirect Selector component working in tandem
with a Palette choose-one component selects one drawing
tool from the collection and feeds it into the sink of the
Display List component. The figure shows both the wiring
diagram and the user interface of the running program. (Note
that the Palette component has employed the icon distin-
guishers of the tool flow objects.)

Following is a description of what each drawing tool
object does in the display list component. As a group the
drawing tools have this in common: they are procedural flow
objects which begin their work when the user depresses the
mouse button, and they end their work when the user lets up
the mouse button. Specifically, at the button-down event, the
Display List component gives control to the drawing tool,
which keeps control until the button-up event, when the
drawing tool gives control back to the Display List compo-
nent. Between the button-down event and the button-up
event, the user has probably been dragging the mouse
around the Display List child window. Each tool stays in a
tight interaction with the mouse during this period (through
the agency of the user-interface management system), cap-
turing the successive positions of the drag.

Except for the select tool, each of the drawing tools has
a common function: at the start of the mouse drag, it creates
an instance of its DisplayObject subclass. During the drag,
it modifies the size and/or position of this instance and, for
each mouse move, it passes the current instance of the
display object to the Display List component for refreshing
the display. At the end of the drag, it hands the current

US 6,272,672 Bl

65

instance of the display object to the Display List component
for incorporation into the display list.

The select tool does not instantiate a new display object
but interacts with the existing display list. At the button-
down event, the select tool is handed control, and it conducts
a dialog with the Display List component which finds out if
the mouse pointer position puts it inside one of the display
objects in the display list. If so and that object is not the
selected object, it is made the selected object. (That is, the
previously selected object is deselected, this object is moved
to the front, and this object is selected, causing it to show its
“handles.”) Then the select tool conducts its dialog with that
selected display object during the drag, moving, rotating, or
resizing the object, depending on the part of the display
object (which one, if any, of its handles) the selection tool is
inside. At the end of the drag, the select tool returns control
to the Display List component.

A host protocol. Applications such as this object-oriented
drawing program frequently have the feature (perhaps as a
changeable option within the program) to restore the palette
to the select tool position after each use of a drawing tool.
An approach to this is described below; it employs the fact
that the Indirect Selector has marked itself as a host of the
drawing tool flow object which is sitting in the Display List
component.

The Display List component has an option, expressed as
a Boolean value (which could be a setting or a variable),
which means: if true, each single use of a drawing tool
returns the palette to the selection tool position. After the
drawing tool returns control back to the Display List com-
ponent this Boolean is tested. If it is true, the Display List
component sends a notify hosts message such as “Return to
default selection” to the drawing tool flow object. This (by
a global design convention) is a message understood only by
selectors. The Indirect Selector, being a host of the drawing
tool, sees the message and, because it understands it, acts on
it. The effect of the message is to force the selection to the
first element (say) of the collection of tools. This does two
things: it changes the output of the Indirect Selector, and it
notifies the Palette, by means of a notify dependents com-
munication act, that the selection has changed.

Note that, even though tool flow objects are procedural,
all the procedure code remains in its tool component. Only
a reference flows to the Display List component.

Section 6.7 Child Window Projectors

Flow objects can have child window projectors just as
they have dialog projectors. (A Dialog Projector component
is a combination of a Child Window Projector component
and a dialog window component.)

There is an abstract class Projector whose instantiating
subclasses create projector objects. FIG. 96 shows schemati-
cally the communication paths by means of which a pro-
jector mediates between a flow object to be displayed (called
the projectee) and a child window.

Projector functions. A projector has the following func-
tions.

1. Maintain display lists and other dynamic state infor-
mation particular to the display. These are initialized
from the value of the projectee.

2. Receive messages from the child window reporting
user-interface events in the child window, and interpret
these events. (Also, maintain the capacity to undo these
interpretations if the user requests.)

3. As part of interpreting child-window events, send
messages to the child window requesting user-interface
data (such as mouse position).

4. As part of interpreting child-window events, immedi-
ately reflect user-interface changes made by the user

10

15

20

25

30

35

66

back into the projectee. (Even after initialization, the
dynamic display data maintained by the projector con-
tinues to be consistent with the projectee. A Transaction
Register component can be used to isolate these
changes temporarily from other data in the application.)

5. Send display messages to the child window.

6. A projector may have its own repertoire of operations
(such as editing operations) which might show up in
menus or buttons.

Generic Projector Child Window Component (FIG. 97)
and Projector Engine Component (FIG. 98). These two
components work together to generalize the Generic Child
Window component and the Display List Child Window
component discussed earlier. The present components can
be used in configurations simpler than the most general
configuration as follows.

The Generic Projector Child Window component alone
(FIG. 97), with no input at the projector (lower) sink, acts
like a Generic Child Window component.

The two components wired as shown in FIG. 99, with an
input only at the tool (lower) sink of the Projector Engine
component, act like a Display List Child Window compo-
nent.

FIG. 100 shows the two components in their general
configuration.

The two sources wired to Named Splitters source named
collections whose elements the splitters are used to access.
The Projector Data Source provides access to the dynamic
display structure managed by the projector. The Projector
Command Source sources a named collection of Dolts
which provide access to the operations of the projector.

FIG. 101 shows the relationships of the objects managed
by the two components.

‘We are now in a position to discuss how the Generic Child
Window component works. There is a mechanism (such as
is discussed in Section 6.2 under Finding the Default Dialog
Projector) which maps every flow object class to a subclass
of Projector; this subclass of Projector is called the flow
object class’s default projector class. (The default projector
class is not necessarily useful for all flow object classes in
production applications; as a default it might conceivably

40 just project the text name of some flow object classes.) If the

45

50

55

60

65

Projector Instance sink of the Generic Projector Child Win-
dow component is unwired or its input is MO, an instance
of the default projector class of the class of the flow object
at the Projectee sink is created and used as the projector
instance. It is this behavior of the Generic Projector Child
Window component which is equated to the behavior of the
Generic Child Window component.

The tool is a parameter which the projector uses in
interpreting child-window events; the selection tool is the
default. A special case of interest is drag-and-drop, in which
case a mouse-up event inside the child window needs to be
interpreted when the mouse-down which began the drag
occurred outside the child window.

A case of particular interest, which has been used in an
assembly tool, is addition of components to a wiring dia-
gram by dragging icons from scrolling component-type-
display child window to the wiring-diagram child window.
We can envision the List Box component with a source
connector which outputs a tool when there is a mouse-down
in the list box. (The tool is obtained from the selected
collection element. In general, if the mouse-down child
window is driven by a projector, the tool can be in the
projector’s data structure, available at the data source con-
nector of the Projector Engine component.) When the
mouse-up is received by the Generic Projector Child Win-
dow component, the tool is available for interpretation of the
event.

US 6,272,672 Bl

67

The preceding describes a single-shot use of the tool, but
the single-shot host protocol discussed in Section 6.6 is not
safe in this case, because the mouse-up might occur
anywhere, possibly leaving the tool in the Generic Projector
Child Window component for too long a time, with risk of
misinterpretation of a subsequent mouse-up. In reality there
are two cases to consider.

1. If the mouse-up is not an event (that is, if the child
window receiving the mouse-down event follows the
drag in a loop), the tool is not sent at mouse-down.
Rather, if (and only if) mouse-up occurs outside the list
box, the list box sources the tool, of which it is a host.
The Generic Projector Child Window component acts
immediately upon receipt of the tool by sensing the
mouse position; if it is in the child window, the pro-
jector acts in response to a mouse-up. Afterward
(regardless of the mouse position), the Generic Projec-
tor Child Window component sends to the tool a notify
hosts message such as “Tool use complete”, causing the
list box to source MO (which causes a default to the
selection tool).

2. If the user interface management system (UIMS)
manages drag-and-drop, either the tool is communi-
cated to the Generic Projector Child Window compo-
nent as part of the mouse-up event (or other facility
provided by the UIMS), or (if the hook is available) a
special-purpose component can extract the tool from
the UIMS facility and sent it to the tool sink before the
event is sent to the child window.

Section 6.8 Example of Projection

In this example we describe informally the projection,
using a Generic Projector Child Window component, of the
E-form of the inside of an executable composite component
type description <XCTD> such as appears in the example of
Section 5.12. In other words, what appears in the child
window is a wiring diagram.

What we are providing, therefore, is further elaboration of
Section 5.13, “What the Wiring Workspace Does,” based on
the premise that the assembly tool itself can be built from
components.

The inputs are as follows.

Tool: normally, none; the selection tool is implied. Other

tool(s) may be used for addition of subcomponents to
a wiring diagram; this is not discussed here.

Projector: an instance of the hypothesized Component-
Projector class. The Generic Projector Child Window
component causes the projector to build its data struc-
ture and refresh the display when the component sinks
a projectee or when the component receives a depen-
dent be notified oop message (except, of course, when
that message is in the scope of a notify owner which the
component has sent).

Projectee: an <XCTD> wrapped as a flow object.

We shall describe the function of an instance of Compo-
nentProjector; this description is motivated by the list of
projector functions given in Section 6.7.

Display data. The display data maintained by the projector
includes the following items.

1. A display list for subcomponents, one subcomponent
per list element. This is an array isomorphic to the
component’s subcomponent reference array <L.SFA>.
Each element is a data structure consisting of the
graphic of the subcomponent type, the region of the
subcomponent (including the origin), an array of sinks,
and an array of sources. Each connector array element
contains origin and region information for its connec-

20

35

45

50

55

60

65

68

tor. (For simplicity of computation, the component
region is such that the region of every connector is
inside its component region.)

2. A display list for wires, one wire per list element. This
is an array isomorphic to the component’s wire descrip-
tion array <LWDA>. Each element is a data structure
consisting of two arrays: an array of line segments (the
straight-line runs) and an array of points (the vertices).

3. A stacking-order list for components. This is a permu-
tation set of the indexes of the subcomponent display
list.

4. A stacking-order list for wires. This is a permutation set
of the indexes of the wire display list.

5. An integer stating the number of components selected.
If the value is s, the top s components are the ones
selected. Zero is admissible. Selecting or deselecting a
component changes its stacking order as well as caus-
ing this counter to be incremented or decremented.

6. An integer stating the number of wires selected. If the
value is s, the top s wires are the ones selected. Zero is
admissible. Selecting or deselecting a wire changes its
stacking order as well as causing this counter to be
incremented or decrements.

7. Avertex number, used when the user creates, moves, or
deletes a vertex.

Display behaviors. The following types of entity are

displayed by the projector.

1. Unselected component.

2. Selected component.

3. Unselected wire.

4. Selected wire.

Child-window events. The events which the projector can

receive from the child window include the following.

1. Mouse button down (with and without shift).

2. Mouse move after button down (this might not be an
event but may need to be tested, depending on the
user-interface management system).

3. Mouse up (this, too, might not be an event).

Interpretation of events. Here are the definitions of the

mouse actions used below.

1. Click: a mouse-down, mouse-up sequence with no
intervening movement (or movement less than a small
threshold). Operationally, this is a mouse-up which was
preceded by a mouse-down such that, in the interval
between the two, no mouse movement (or no move-
ment outside of a small region containing the mouse-
down point) has occurred.

2. Drag: a mouse-down, mouse-up sequence with inter-
vening movement outside of the small region.
Operationally, this is a sequence of mouse moves,
preceded by a mouse-down and ending in a mouse-up,
which have failed the definition of click. It is discov-
ered on the mouse move which takes the mouse out of
the small region containing the mouse-down point.

User behaviors. The projector decodes events to identify

the following user behaviors.

1. Click outside a component or wire. This eliminates all
selections.

2. Shift-click outside a component or wire. This has no
effect on selection.

3. Click inside a component or connector. This deselects
all selections and selects this one component.

4. Shift-click inside a component or connector. If com-
ponent is selected, remove from selection list;
otherwise, add to selection list.

US 6,272,672 Bl

69

5. Click on (or near) a wire or vertex. This deselects all
selections and selects this one wire.

6. Shift-click on (or near) a wire or vertex. If wire is
selected, remove from selection list; otherwise, add to
selection list.

7. Drag beginning outside a component. Deselect all
selections. At end of drag, defined rectangle is used to
choose the new set of selected components and wires.
(There can be differing definitions of whether a com-
ponent or wire needs to be completely in the rectangle
in order to be selected.)

8. Drag beginning inside a component but not inside a
connector. If component is unselected, deselect all
selections, select this component, then move this com-
ponent by the amount dragged. If component is
selected, drag all selected components.

9. Drag beginning inside a connector. Selections are
unchanged. Create a line whose origin is in the con-
nector and whose terminus stays at the mouse point
while the mouse button is down. If mouse-up is in a
connector (of another component), instantiate a zero-
vertex wire if it would meet suitability criteria (such as
(1) one source-one sink, (2) at most one wire ending at
a sink, (3) perhaps some static flow-object type-
checking). If mouse-up is not in a connector, there is no
effect of the drag.

10. Drag beginning on (or near) a wire not at (or near) a
vertex. Selections are unchanged. Create and drag a
new vertex. If mouse-up is sufficiently far away from
mouse-down, reconfigure wire with new vertex.

11. Drag beginning on (or near) a vertex. Selections are
unchanged. If mouse-up position is on (or near) an
adjacent vertex or adjacent wire end, reconfigure wire
with vertex removed. Otherwise, if mouse-up position
is sufficiently far away from mouse-down, reconfigure
wire with vertex moved.

Messages to Projectee. The projectee responds to the
following messages from the projector. Most of these mes-
sages are for the purpose of obtaining data from a type
description.

1. Notify owner.

Obtain number of subcomponents.

Obtain number of sinks in subcomponent s.

Obtain number of sources in subcomponent s.

Obtain region of subcomponent s. (Region is displaced

by origin of subcomponent in wiring diagram. Regions

are used to detect whether mouse point is in region.)

6. Obtain region of sink c in subcomponent s. (Region is
displaced by origin of connector and origin of
subcomponent.)

7. Obtain region of source ¢ in subcomponent s. (Region
is displaced by origin of connector and origin of
subcomponent.)

8. Obtain number of wires.

9. Obtain number of vertices in wire w.

10. Obtain region of straight run r in wire w.

11. Obtain region of vertex v in wire w.

12. Obtain graphic of subcomponent s. (Graphic is
assumed to contain connector graphics.)

13. Obtain origin of subcomponent s.

14. Supply origin of subcomponent s. This message is
usually followed by notify owner.

15. Obtain array of coordinates of vertices in wire w. (If
there are V vertices, vertex 0 is source point, vertex
V+1 is sink point.)

2.
3.
4.
5.

20

25

30

35

40

45

50

55

60

70

16. Supply array of coordinates of vertices in wire w.
(Source and sink are implied, and each vertex may
contain positioning heuristic information.) This mes-
sage is usually followed by notify owner.

17. Delete. Arguments are two arrays, one of component
numbers, one of wire numbers. This message is usually
followed by notify owner.

Operations.

1. Clear. Delete the selected components and wires.

2. Cut.

3. Copy.

4. Paste.

5. Undo. Undo and redo can have various interpretations.
They usually relate to actions which modify the type
description: component, wire, and vertex creation,
deletion, and movement; cut, copy, and paste.

6. Redo.

Part 7 Example of a Recursive Algorithm

Section 7.1 Program Description vs. Algorithm Descrip-
tion

Most languages derived from the computer-science tra-
dition are algorithmic languages. They are, by construction,
universal. Some recent languages, a portion of the invention
included, have been designed primarily to simplify the
development of real applications with display- out/event-in
user interfaces. Because the universe of these applications is
smaller than the universe of all algorithms, these recent
application description languages can put ease of description
above universality.

The present language looks like a dataflow language, but
this paper has put no emphasis at all on computation, which
is a natural domain for dataflow languages. This part derives
a component which computes factorial recursively, not to
show that the language really is a dataflow language, but to
demonstrate that some of the concepts developed in the
previous part are sufficient to account for recursion.

‘We shall use the following definition of factorial. First we
define the conditional functional Cond, whose last three
arguments are functions:

Cond(x, C, T, F)=if C(x) then T(x) else F(x).

In other words, Cond computes the Boolean C(x). If the
Boolean is true, the result of Cond is T(x). If the Boolean is
false, the result of Cond is F(x).

To define Factorial we first define the following three
functions

C(x)=(x=1).

One(x)=1

Fact1(x)=x*Factorial(x-1).

Then we define,

Factorial(x)=Cond(x, C, One, Factl).

(The argument x is assumed to be an integer.) In other
words, if x is less than or equal to 1, Factorial(x) has the
value 1. If x is greater than one, Factorial(x) is computed as
x*Factorial(x-1).

Section 7.2 A Conditional Component

Our derivation with components will parallel the above
definition of Factorial. We first define the Cond component
by the wiring diagram of FIG. 102.

The C, T, and F sinks of FIG. 102 accept component
description flow objects produced by Component Descrip-
tion components (see Section 6.5). The In sink accepts the
first argument of the Cond component (call it x), and the Out
source sources the result. The computation is started by

US 6,272,672 Bl

71

picking the Dolt sourced by the Start source. When the
computation is complete and the result is in place, the Dolt
at the Finish sink is picked.

There are three Component Invocation components (see
Section 6.5) which, from top to bottom, invoke the C, T, and
F functions. (The invocation components should have col-
lector components at their inputs and splitter components at
their outputs; these have been omitted for exposition.)

The process starts when the Dolt at the Start source is
picked. Because of the clear-before-send rule and/or the MO
design convention (see Sections 2.2 and 2.3), all inputs have
arrived at their sinks. The Start pick invokes the function
C(x), whose result is a Boolean, which finds its way to the
center sink of the Boolean Selector component (see Section
4.5). Then the Dolt sourced by the Boolean Selector com-
ponent is picked, and, depending on whether the result of
C(x) is true or false, the Dolt at the first or third sink is
picked. This, in turn, invokes the function T(x) or F(x),
respectively. After the output of T(x) or F(x) makes its way
to the Out source by way of the Pass-through component
(see Section 4.5), theDolt at the Finish sink is picked, at the
third sink of the Component Invocation component which
invokes either T or F, respectively.

Section 7.3 Computational Components

We introduce a set of components which will perform the
computational part of Factorial. The component shown in
FIG. 103 sources the constant 1, the component shown in
FIG. 104 source the results of computing the arithmetic
expression X—1 (where X is its input), the component shown
in FIG. 105 sources the Boolean expression x=1, and the
component shown in FIG. 106 sources the result of com-
puting the expression x*y (where X is the first and y is the
second input value).

Now the intermediate components C, T, and F are defined
by the wiring diagrams in FIGS. 107, 108, and 109, respec-
tively.

The only thing new here is the Data Change Detector
component in FIG. 109. This picks the Dolt at its second
sink after it has passed any new value through its top
sink-source pair, thus computing and sourcing Factorial(x—
1). In this application the Data Change detector permits
building asynchronous (unclocked) components from syn-
chronous parts.

Finally, the definition of Factorial is defined by the wiring
diagram in FIG. 110.

Section 7.4 Bootstrapping Recursive Definitions

The Factorial component must be bootstrapped into exist-
ence in several stages. This is because, when the definition
of Factorial is first wired, it will contain a reference to an
undefined component, namely Factorial, indirectly through
the F component. This bootstrapping is done as follows.

1. Define F as a one-input, one-output component with
nothing in it but connector components.

2. Define C and T.

3. Define Factorial.

4. Now redefine F correctly, with its reference to Facto-
rial.

Part 8 A Component Type Market Model

Section 8.1 Component Type Interchange

One of the premises of the present component-based
program model is that the person who wires a component
into a wiring diagram is not necessarily, indeed is probably
not, the person who built the component.'® Implicit in this
premise is the distinction between producers and consumers
of components. Furthermore, people who build composite

20

25

30

35

40

45

50

55

60

65

72

components, who are potentially producers of these com-
posite components, are also consumers of the subcompo-
nents they employ, which subcomponents can themselves be
both primitive and composite components. Finally, we
define a component market as a channel through which
components are passed from producers to consumers. (Note
that applications are special cases of composite components,
and that application users are component consumers.)

10 We are really talking about component types, but where it is convenient and
clear in this chapter we shall use the abbreviation component to mean
component type.

The ideas just presented are summed up in FIG. 111,
which describes a model by which components flow from
producers to consumers through markets.

The Application Program Market is distinguished from
the general Component Market because application pro-
grams, as we mean the term here, can run free-standing
without the presence of an assembly tool. This distinction is
made explicit by the absence of an arrow from Tool Pro-
ducers to End Users.

FIG. 111 suggests the following conclusions.

1. A standard interchange form for component type

descriptions is desirable.

2. The assembly tool, as the enabler of this entire inter-
change arrangement, must have the following input/
outputs.

a. Import of component type descriptions in inter-
change form into its component library.

b. Export of component type descriptions from its
library to interchange form

c. Output of packaged programs in executable form.

Section 8.2 Assembly Tool Structure

We conclude that a high-level block diagram of the
assembly tool can look like FIG. 112.

Referring to FIG. 112, we identify the major functional
parts of the assembly tool as follows.

Component library accepts, stores, and makes available
L-form component type descriptions.

Wiring workspace creates new wiring diagrams, edits
wiring diagrams (including the addition of new components
from the library), and encapsulates wiring diagrams into the
library.

Application packager converts L-form type descriptions
of composite components into a form which is executable
independent of an assembly tool, and makes that form
available outside the assembly tool.

Component type importer accepts from outside the assem-
bly tool a component type description in interchange form,
converts it to L-form, and gives it to the library. (This might
involve resolving version, timestamp, and naming conflicts
with type descriptions already in the library.)

Component type exporter converts an [-form component
type description to interchange form and makes it available
outside the assembly tool. (This might involve renaming the
component type and the types of some subcomponents.)

Section 8.3 The Structure of Restriction

The existence of a component market does not necessarily
mean that components in the market carry prices. In order,
however, not to constrain the setting of prices for
components, we must provide for restrictions on the usage
of components. One generally accepted way to restrict the
usage of components is through licensing, by means of
which the supplier explicitly grants to certain consumers
certain use of a component (and, by implication, implicitly
denies to others that use of the component).

The use of the component type means access to its
information. Any restriction on such use must have a struc-
ture to it. If there were not such a structure, it would not be

US 6,272,672 Bl

73

possible to provide certain kinds of partial use, such as (1)
wire but don’t open, (2) run but don’t wire, and (3) examine
help but don’t use.

In defining a structure of restriction of a specific compo-
nent type, we take the following steps.

1. Identify all views of a component type which are
potentially to be communicated to any consumer.

2. Group these views into classes, called aspects, such
that, for all views in the same aspect, the restriction is
the same. Specifically, for a particular component type,
producer P, consumer C, and aspect A:

a. Either P grants C access to A, or P does not grant C
access to A.

b. If P grants C access to aspect A of a component type,
then P grants C access to all views in A; if P does not
grant C access to A, then P grants C access to no
views in A.

3. Define a way to implement access which is effective for

both producers and consumers.

An advertisement is an aspect of a component type, access
to which is usually granted to anybody willing to view it.
The views of the advertisement might be printed circulars or
entries in a digital component catalog available from an
online service. On the other hand, the coding which defines
the inside of a primitive type or the wiring diagram which
defines the inside of a composite type is an aspect of the type
to which access might be denied except to specific consum-
ers. The views of these component insides are probably in
digital form for direct use by programming tools.

Part 9 How The Use of Components Is Restricted

Section 9.1 Licensing of Component-type Aspects

The table in FIG. 113 presents nine aspects of every
component type. The first two aspects are conventional and
not specific to the present program model. The last seven
aspects are specific to the present program model.

Each of these last seven aspects is described in terms of
the restriction mechanism used to control access to the
aspect. Each of these seven restriction mechanisms is called
a license.

A license is present/absent in a component type descrip-
tion means that a representation of the license is encoded/not
encoded in the <permissions> part of the component type
description. Access to an aspect of a component type is
granted if and only if the license associated with that aspect
is present in the component type description. Component
consumer C is licensed for aspect A of component type T
means that C rightfully possesses a description of T in which
the license for A is present. Here are the seven licenses. '
! In these descriptions “user” means “user of the assembly tool.”

HL Help License. Permits the user to access the help
facilities associated with the component type and with each
outside connector of the component type. Help facilities
may be accessed when the component type description is
either in the library or in the wiring workspace. (We do not
discuss the user interface of the library.)

RL Running License. The basic execution license. Permits
the assembly tool to create, from the component library, any
number of components of the licensed type as subcompo-
nents of a named composite component, and to run these
subcomponents in the assembly tool. Does not, in itself,
permit the user directly to add the component from the
library to the wiring workspace or to attach new wires to the
component’s connectors. Required for encapsulation of a
wiring diagram containing this component.

20

25

30

35

40

45

50

55

60

65

74

WL Wiring License. In addition to the rights of RL,
permits the user to copy, from the component library, any
number of references to the licensed type into the assembly
tool’s wiring workspace and to attach wires to the refer-
ences’ connectors.

OL Opening License. Analogous to disclosure of source
code. Permits the user to view (but not modify) the definition
of the inside of the component. For a primitive component,
this means viewing the source code. For a composite com-
ponent, this means opening a projection window on the
defining wiring diagram.

PL Packaging License. The basic application developer’s
license. Permits the user to run the packager on a composite
component type description containing this component as a
subcomponent (at any level). That is, permits the packaging
of a freestanding program which, when invoked, instantiates
or has the capacity to instantiate this component type.

EL Export License. The basic component producer’s
license. Permits the user to run the exporter on a composite
component type description containing this component as a
subcomponent (at any level).

DL Derivation License. In addition to the rights of OL,
permits the user to modify the inside of this composite
component and to encapsulate the resulting wiring diagram.

The assembly tool permits encapsulation

1. of an anonymous wiring diagram created from an

empty workspace, when each component contains RL,
or

2. of a wiring diagram which is obtained by modifying the

inside of a composite component containing DL, when
each component contains RL.

Encapsulation creates type descriptions in the library
containing DL, so that the user can modify his own cre-
ations. (This DL is normally removed on export; see Section
92)

Note that each license is specifically associated with one
or more operations of the assembly tool with respect to the
component type. By definition, the assembly tool disables
each of these operations with respect to the type unless the
license associated with the operation is present in the type
description. Here is one way to implement license enforce-
ment. Each of the license-enabled operations is performed
by a specific user-interface event, such as the picking of a
menu command. A menu command, if picked, will be
applied to all selected components in the wiring workspace.
The menu command is enabled if and only if the license is
present in the type description of every selected component.
(In the case of events which are not menu commands, such
as creation of a wire by dragging, the response to the event
is enabled if and only if the license is present.)

FIG. 114 shows the relationships described so far. A
specific type description (TD in a circle) travels from its
producer to the component library inside the assembly tool
of a consumer, via the importer. From the library it can
migrate to the wiring workspace, and back to the library and
on to the packager or the exporter as a subcomponent of a
composite component created by the consumer. (The arrow
from TD to TD' represents the creation of the new type TD'
by encapsulation of a wiring diagram containing TD.) For
each facility of the assembly tool, the dotted lines show what
licenses control operations related to this facility.

Section 9.2 Forwarding of Licenses

Assume, as represented in FIG. 115, that component
producer P1 creates a composite component type T1 con-
taining component types T2 and T3, for both of which he has
export licenses from the producers, P2 and P3. Now assume
that P1 exports and licenses T1 to consumer C4. What

US 6,272,672 Bl

75
licenses does C4 have for T2 and T3? (In the figure the
licenses for each type are shown below the circle represent-
ing the type.) From the statement of the problem, P1 has EL
and WL for T2 and T3. In addition to EL and WL, assume
that P1 has obtained OL for T2 and PL for T3.

Does C4 obtain WL, OL, and EL for T2 and WL, PL, and
EL for T3? We take the position that any licenses (except for
RL) which C4 obtains for T2 and T3 must be the result of
a direct transaction between C4 and P2 (in the case of T2),
and between C4 and P3 (in the case of T3). The exception
to this rule is RL: the grant of EL by P2 to P1 implies the
right to forward RL on T2.

The rule for subcomponents of an exported composite
component: When the exporter is creating a component type
in interchange form, it removes WL, OL, PL, EL, and DL
from all subcomponents. RL, which is present in all
subcomponents, remains, and HL remains when it is present.
(If OL is denied for the top-level component, there could be
an optimization which removes HL and the help objects
themselves from all subcomponents.)

The rule for the exported composite component itself: The
user specifies to the exporter whether HL, OL, PL, EL,
and/or DL are to be included with the exported component.
(WL and RL might also be excluded, in the case of a
component built to be licensed in the field by means of an
on-line or telephone transaction.)

Note that when C4 receives T2, for example, there might
be a conflict with a pre-existing T2 in C4’s library. There are
three cases.

1. T2 was not in C4’s library. T2 is added to C4’s library

with RL and, if present, HL.

2. T2 was in C4’s library, with the same licenses as the
one received from P1. If component type descriptions
have revision dates and/or version numbers and there is
a conflict between the library copy and the imported
copy, C4 should be presented with the choice of leaving
or replacing the existing version of T2.

3. T2 was in C4’s library, with different licenses. C4
should be presented with the choice of leaving or
replacing the existing version of T2.

What is claimed is:

1. A method of processing data comprising

providing a flow object,

providing a network of interconnected processing com-
ponents none of which is a flow object and at least one
of which is not a user-interface component,

associating the flow object with data that has been or is to
be processed,

enabling a flow within the network which transports from
one processing component to another a reference which
provides access to the flow object,

enabling processing components to use the reference to
obtain access to the flow object for the purpose of
processing the flow object or the data associated with
the flow object, and

maintaining consistency across the network, as the flow
object or the data associated with it are processed, of
the components’ views of the flow object and its data,
by a sequence of communications which comprises

a communication from a sending processing component
to the flow object, and

a communication from the flow object to a receiving
processing component.

2. The method of claim 1 wherein

an interconnection touches a pair of processing compo-
nents associated with the interconnection, and

20

25

30

35

40

45

50

55

60

65

76

a reference which provides access to the flow object is

transported across the interconnection.

3. The method of claim 2 wherein references which
provide access to the same flow object are transported across
different interconnections.

4. The method of claim 2 wherein the reference which
provides access to the flow object is transported in only one
direction across the interconnection, from a sending com-
ponent associated with the interconnection, which compo-
nent sends the flow, to a receiving component associated
with the interconnection, which component receives the
flow.

5. The method of claim 4 wherein the sending processing
component is the processing component associated with the
flow object’s owner.

6. The method of claim 4 comprising a selector processing
component, wherein

the selector processing component is a receiving compo-

nent of a reference which provides access to an input
flow object whose associated data comprises a base
collection, and

the selector processing component is a sending compo-

nent of a reference which provides access to a list flow
object whose associated data comprises a selected
collection instance based on the base collection.

7. The method of claim 6 in which the selector processing
component is a sending component of a reference which
provides access to an output flow object, wherein

the associated data of the output flow object provides

access to the subcollection of the base collection speci-
fied by the selected collection instance associated with
the list flow object, and

a modification to the selected collection instance causes

the value of the associated data of the output flow
object to update to provide access to the subcollection
specified by the modified selected collection instance.

8. The method of claim 7 wherein

the output flow object has an owner, and

the selector processing component is associated with the

owner of the output flow object.

9. The method of claim 6 wherein

the list flow object has an owner, and

the selector processing component is associated with the

owner of the list flow object.

10. The method of claim 4 comprising a launcher pro-
cessing component, wherein

the launcher processing component is configured to be a

receiving component of a reference which provides
access to an argument flow object,

the launcher processing component is configured to be a

receiving component of a reference which provides
access to a flow object whose associated data denotes
an instantiable processing component type,

an instance of the instantiable processing component type

is configured to be a receiving component of a refer-
ence which provides access to a flow object, and
the launcher processing component is configured to per-
form an instantiation processing operation, wherein

the instantiation processing operation causes to be created
an instance of the instantiable processing component
type, and

if the launcher processing component is a receiving

component of a reference which provides access to an
argument flow object, then the created instance is a
receiving component of a reference which provides
access to said argument flow object.

US 6,272,672 Bl

77

11. The method of claim 4 wherein, when the receiving
component receives a reference which provides access to the
flow object, then the receiving component is enabled to
process the flow object or its associated data.

12. The method of claim 4 wherein,

when a processing component of the network which is
configured to be both a receiving component and a
sending component receives a flow of a reference
which provides access to the flow object,

then the processing component is enabled to send a flow
of a reference which provides access to the flow object.
13. The method of claim 4 wherein

a processing component A of the network is a sending
component with respect to the flow object and with
respect to interconnection I, and

a processing component B of the network is a receiving
component with respect to the flow object and with
respect to interconnection J, wherein

interconnection I is different from interconnection J.

14. The method of claim 4 comprising a composite
processing component which comprises an internal network
of interconnected processing components, wherein

if the composite processing component receives a flow
which transports a reference A which provides access to
flow object F, then there exists a processing component
of the integral network which receives a flow which
transports a reference B which provides access to flow
object F, and

if the composite processing component sends a flow
which transports a reference C which provides access
to flow object G, then there exists a processing com-
ponent of the internal network which sends a flow
which transports a reference D which provides access
to flow object G.

15. The method of claim 4 comprising

a processing component configured to be a sending com-
ponent with respect to an interconnection, and

a processing operation of the processing component, a
result of which processing operation is a result object,
wherein

upon completion of the processing operation, the process-
ing component is enabled to initiate a flow of a refer-
ence which provides access to a flow object whose
associated data comprises the result object.

16. The method of claim 1 wherein processing comprises
modification of an aspect of the flow object or of the data
associated with the flow object.

17. The method of claim 1 wherein a reference which
provides access to the flow object is used by one of the
processing components to communicate to the flow object.

18. The method of claim 1 wherein a reference which
provides access to one of the processing components is used
by the flow object to communicate to the processing com-
ponent.

19. The method of claim 1 wherein

the flow object has an owner and comprises a reference
which provides access to the owner, and

the owner is associated with one of the processing com-
ponents.

20. The method of claim 19 wherein the owner comprises
the owner’s associated processing component and an inter-
connection which touches that processing component.

21. The method of claim 19 wherein one of the processing
components which is processing the flow object or the data
associated with the flow object maintains consistency

10

15

20

25

30

35

40

45

50

55

60

65

78

between itself and the processing component associated with
the owner of the flow object.

22. The method of claim 19 wherein the processing
component associated with the owner maintains consistency
between itself and the processing component associated with
a dependent of the flow object.

23. The method of claim 22 wherein the processing
component associated with the dependent is configured to
ignore an aspect of a received communication.

24. The method of claim 19 wherein the owner comprises
a processing component of the network.

25. The method of claim 19 wherein the owner is asso-
ciated with exactly one processing component of the net-
work.

26. The method of claim 19 wherein the owner is con-
figured to interact with its associated processing component.

27. The method of claim 1 wherein the flow object has one
or more dependents and comprises one or more references
which provide access to the one or more dependents,
wherein

each of the dependents is associated with one of the

processing components.

28. The method of claim 27 wherein a dependent com-
prises the dependent’s associated processing component and
an interconnection which touches that processing compo-
nent.

29. The method of claim 27 wherein the flow object
communicates to the processing component respectively
associated with each of its dependents.

30. The method of claim 27 wherein a dependent com-
prises a component of the network.

31. The method of claim 1 wherein a flow comprises
copying a reference which provides access to the flow
object.

32. The method of claim 1 wherein at least one of the
communications comprises giving notice that processing has
occurred.

33. The method of claim 1 wherein processing comprises
projecting an aspect of the flow object or data associated
with the flow object onto a user interface.

34. The method of claim 33 wherein for every displayed
element of the user interface there exists a flow object
wherein the displayed element is a projection of an aspect of
the flow object or of data associated with the flow object.

35. The method of claim 1 wherein one of the processing
components is configured to receive an event.

36. The method of claim 35 wherein the event comprises
a signal originated by a device.

37. The method of claim 1 wherein the components of the
network are arranged hierarchically.

38. The method of claim 1 wherein the data associated
with the flow object comprises an object.

39. The method of claim 38 wherein the object comprises
a process.

40. The method of claim 1 wherein the data associated
with the flow object comprises a flow object.

41. The method of claim 1 wherein the data associated
with the flow object comprises a collection of flow objects.

42. The method of claim 1 wherein the association
between the flow object and its associated data comprises
the flow object comprising a reference which provides
access to the associated data.

43. The method of claim 1 wherein more than one flow
object is associated with the same data.

44. The method of claim 33 wherein the associated data
of the created flow object is created other than by the
processing component which creates the flow subject.

US 6,272,672 Bl

79

45. The method of claim 1 wherein the data associated
with a first flow object has a nonempty intersection with the
data associated with a second flow object.

46. The method of claim 1 wherein at least some of the
processing components of the network are organized in
types, instances of which comprise these processing com-
ponents.

47. The method of claim 1 wherein at least some of the
processed data are organized in types, instances of which
comprise these processed data.

48. The method of claim 47 wherein one of the data
instances denotes a processing component type.

49. The method of claim 48 wherein one of the processing
components of the network creates an instance of the
denoted processing component type.

50. The method of claim 49 wherein the processing
component initiates the execution of the created component
instance.

51. The method of claim 47 comprising a selected col-
lection processed data type, an instance of which comprises

a reference which provides access to a base collection on

which the selected collection instance is based, and

a selection on the base collection, which selection com-

prises a specification of a possibly empty subcollection
of the base collection.
52. The method of claim 51 comprising a flow object
associated with an instance of the selected collection pro-
cessed data type, wherein
there is an editor processing component of the network
which is configured to modify the selection in the flow
object’s associated selected collection instance, and

there is a projector processing component of the network
which is configured to project onto a user interface an
aspect of the selected collection instance.

53. The method of claim 52 wherein a modification to the
selected collection instance causes the projector processing
component to respond by updating its projection to be
consistent with the resulting value of the selected collection
instance.

54. The method of claim 1 comprising a flow object
whose response to processing is consistent with the response
to said processing of a null object.

55. The method of claim 1 wherein one of the processing
components is configured to create a flow object.

56. The method of claim 43 wherein the processed data
comprises the settable processing component’s setting
value.

57. The method of claim 56 wherein

there is a flow object whose associated processed data

comprises an aspect of the settable processing compo-
nent’s setting value, and

there is an operating processing component of the net-

work configured to process said flow object or associ-
ated processed data.

58. The method of claim 57 wherein

the flow object has an owner associated with an owning

processing component of the network, a dependent
associated with a user processing component of the
network, and a dependent associated with the operating
processing component, and

the owning processing component, the operating process-

ing component, and the user processing component
participate in a consistency-maintaining sequence of
coordinations.

59. The method of claim 58 wherein the owning process-
ing component is the settable processing component.

10

15

20

25

30

35

40

45

50

55

60

80

60. The method of claim 55 wherein a creator processing
component which creates the flow object is configured to
send a flow of a reference which provides access to the flow
object.

61. The method of claim 60 wherein the created flow
object has an owner and the owner is configured to enable
performance of a processing operation by a user processing
component of the network which comprises a reference
which provides access to the flow object.

62. The method of claim 61 wherein the owner is asso-
ciated with the creator processing component.

63. The method of claim 1 wherein the flow object yields
an identifier which is distinctive of the flow object.

64. The method of claim 63 wherein the distinctive
identifier may be data or an object.

65. The method of claim 63 wherein one of the processing
components uses the identifier in processing.

66. The method of claim 65 wherein processing comprises
projection of an aspect of the identifier onto a user interface.

67. The method of claim 65 wherein processing comprises
a table lookup.

68. The method of claim 1 wherein the flow object
comprises a reference which provides access to a processing
component of the network.

69. The method of claim 1 wherein the processing com-
ponents of the network include a settable processing com-
ponent which comprises a setting value.

70. The method of claim 69 wherein the setting value
becomes persistent when the network is encapsulated.

71. The method of claim 70 wherein the setting value may
be changed either before or after encapsulation.

72. The method of claim 1 wherein at least some of the
flow objects are organized in types, instances of which
comprise these flow objects.

73. The method of claim 1 wherein there is a proxy object
which is in relationship to the flow object.

74. The method of claim 73 wherein a processing com-
ponent of the network communicates to the flow object by
communicating to the proxy object which forwards the
communication to the flow object and returns the result to
the processing component.

75. The method of claim 73 wherein the flow object
communicates to the processing component by communi-
cating to the proxy object, which forwards the communica-
tion to the processing component and returns the result to the
flow object.

76. The method of claim 75 wherein the flow object has
an owner and communicates to the processing component
associated with the owner via the proxy object.

77. The method of claim 75 wherein the flow object has
a dependent and communicates to the processing component
associated with the dependent via the proxy object.

78. The method of claim 73 wherein

at least one communication is sent via a proxy object.

79. The method of claim 1 wherein

there is an editor processing component of the network
which is configured to modify aspect A of the flow
object or the flow object’s associated processed data,
and

there is a user processing component of the network

which is configured to employ aspect B in processing
of the flow object or of the flow object’s associated
processed data.

80. The method of claim 79 wherein there occurs a
consistency-maintaining sequence of coordinations com-
prising

coordination between the editor processing component

and a relay processing component of the network,

US 6,272,672 Bl

81

wherein the editor processing component notifies the
relay processing component, by a sequence of
communications, that modification has occurred, and

coordination between the relay processing component and
the user processing component wherein the relay pro-
cessing component notifies the user processing
component, by a sequence of communications, that
modification has occurred.

81. The method of claim 80 wherein the user processing
component is configured so that, in response to notice that
modification has occurred, the user processing component
employs in its processing the modified flow object or its
associated modified data.

82. The method of claim 1 comprising a command flow
object which has

an owner associated with an actuator processing compo-
nent of the network, configured to perform a designated
processing operation, and

a dependent associated with an initiator processing com-

ponent of the network, configured to receive a signal,
wherein

when the initiator processing component receives the

signal it notifies the actuator processing component, by
a sequence of communications, that the signal has been
received, and

the actuator processing component performs the desig-

nated processing operation.

83. The method of claim 82 wherein the signal arises in
consequence of a processing operation.

84. The method of claim 82 comprising a projector
processing component which projects an aspect of the
command flow object or its associated data on a user
interface, wherein the occurrence of an event at the user
interface causes the initiator processing component to
receive a signal.

85. The method of claim 84 wherein the projector pro-
cessing component is the initiator processing component.

86. A tool for developing a software program,

the tool comprising a program under development and a

possibly null flow object,

the program under development comprising a network

comprising components and interconnections,

the tool being configured to restructure the network,

an interconnection denoting a flow object and being
attached to two components, one of the attachments
being asource and the other being a sink, the source
being associated with a source function,

an output from the source function determining the flow
object denoted by the interconnection,

an input to the source function comprising a flow object
denoted by a sink of the source’s component, and

a nonnull flow object comprising a processed object,
wherein

a component is configured to send a processing message
to the processed object,

a component is configured to communicate to the nonnull
flow object denoted by an interconnection attached to
the component, and

a component is configured to enable the nonnull flow
object denoted by an interconnection attached to the
component to communicate to the component.

87. The tool of claim 86 comprising a program control

mechanism configured to stop and start the program under
development, wherein

15

20

25

30

35

40

45

50

55

60

65

82

when the program under development is stopped, the

interconnection denotes a null flow object.

88. The tool of claim 86 wherein a network computation
comprises a source function, the network computation being
configured so that execution of the network computation is
begun when the program under development is started,
wherein

if the network computation terminates without error and

then the network is restructured

then the network computation is reconfigured based on
the resultant network structure, and execution of the
resultant network computation is begun if the program
is not stopped.

89. The tool of claim 88 wherein the network computation
is iterative.

90. The tool of claim 88 wherein all functions of the
network computation are performed, one function at a time.

91. The tool of claim 90 wherein, if the value of a function
is dependent on the value of at most one input, then the
function is evaluated whenever that input value changes.

92. The tool of claim 90 wherein, if the value of a function
is dependent on the value of more than one input there is a
pending status associated with the function, wherein

the pending status of the function is set to pending if the

value of an input on which the value of the function is
dependent changes when the pending status of the
function is not pending,

the pending status of the function is set to not pending

when the program under development is stopped, and
the pending status of the function is set to not pending
when the function’s evaluation is complete.

93. The tool of claim 92 wherein the network computation
does not terminate until the pending status of every function
of the network computation is not pending.

94. The tool of claim 93 comprising a network compu-
tation control mechanism which seeks to minimize the total
number of function evaluations.

95. The tool of claim 92 wherein a designator of the
function is placed at the rear of a first-in first-out queue when
the pending status of the function is set to pending, and the
function designator is removed when it reaches the front of
the queue, after which removal the function is evaluated.

96. The tool of claim 95 wherein the network computation
has terminated when the queue is empty after completion of
evaluation of the function.

97. The tool of claim 95 comprising loop detection to
determine nontermination of the computation.

98. The tool of claim 88 comprising a network compu-
tation control mechanism which seeks to minimize the total
network computation time.

99. The tool of claim 88 wherein the network computation
also comprises a state function.

100. The tool of claim 88 wherein the network compu-
tation comprises all source functions and all state functions
of the network.

101. The tool of claim 88 wherein a function of the
network computation is configured to query a database.

102. The tool of claim 86 comprising a connector,
wherein

the connector is attached to a component,

the connector comprises either a sink connector or a

source connector, wherein

either the source connector comprises a source, in which

case the source connector is attached to the source’s
interconnection, the source connector denotes the flow
object denoted by the interconnection, and the source

US 6,272,672 Bl

83

connector comprises the source’s source function, or
else the source connector is not attached to an
interconnection, and
either the sink connector comprises a sink, in which case
the sink connector is attached to the sink’s intercon-
nection and the sink connector denotes the flow object
denoted by the interconnection, or else the sink con-
nector is not attached to an interconnection.
103. The tool of claim 86 wherein the program under
development comprises a user interface.
104. The tool of claim 86 comprising a composite com-
ponent type which comprises a network of component
templates and interconnection templates, wherein

each interconnection template has two attached compo-
nent templates,

said composite component type being configured to create
an instance which is a composite component compris-
ing a network of components and interconnections,
wherein

a component template creates a component

an interconnection template creates an interconnection,

and

the components attached to the interconnection are cre-

ated by the component templates attached to the inter-
connection template which creates the interconnection.

105. The tool of claim 104 wherein a component template
comprises either a composite component template or a
primitive component template.

106. The tool of claim 105 wherein a composite compo-
nent template comprises a composite component type, and a
primitive component template comprises a primitive com-
ponent type.

107. The tool of claim 106 wherein a component type
comprises either a composite component type or a primitive
component type.

108. The tool of claim 107 comprising a restriction
mechanism wherein the component type comprises a restric-
tion.

109. The tool of claim 108 wherein an instance of the type
comprises the restriction.

110. The tool of claim 104 wherein the instance is
attached to an outside sink connector.

111. The tool of claim 110 wherein the network of the
instance comprises a component attached to an inside sink
connector, wherein

the inside sink connector and the outside sink connector

denote the same flow object.

112. The tool of claim 104 wherein the instance is
attached to an outside source connector.

113. The tool of claim 112 wherein the network of the
instance comprises a component attached to an inside source
connector, wherein

the inside source connector and the outside source con-

nector denote the same flow object.

114. The tool of claim 86 in which the program under
development comprises an instance of a composite compo-
nent type.

115. The tool of claim 86 configured to create an instance
of a component type.

116. The tool of claim 86 whose program under devel-
opment comprises at least one component with a source
connector which, upon commencement of the program,
denotes a nonnull flow object.

117. The tool of claim 86 wherein every component of the
program under development is created by a component
template.

10

15

20

25

30

35

40

45

50

55

60

65

84

118. The tool of claim 117 wherein a component’s tem-
plate’s type determines the number of sink and source
connectors and the identity of each sink and source connec-
tor of the component.

119. The tool of claim 118 wherein the type of the
component determines the source function of each source
connector of the component.

120. The tool of claim 119 wherein the source function’s
input comprises either or both of a flow object denoted by a
sink of the source’s component or a state variable of the
component.

121. The tool of claim 86 wherein the program under
development comprises a component which comprises a
state variable.

122. The tool of claim 121 wherein the identity and initial
value of the state variable are determined by the compo-
nent’s type.

123. The tool of claim 122 wherein the state variable is set
to its initial value when the program is stopped.

124. The tool of claim 122 wherein the state variable is
associated with a state function, determined by the compo-
nents type, the output from the state function determining
the state variable’s value and the input to the state function
comprising either or both of a flow object denoted by a sink
of the source’s component or a state variable of the com-
ponent.

125. The tool of claim 121 wherein the state variable
provides access to a storage system external to the compo-
nent.

126. The tool of claim 86 wherein the state variable
provides access to the result of a database query.

127. The tool of claim 121 wherein the component
projects an aspect of the state variable onto the user interface
of the program under development.

128. The tool of claim 86 in which the program under
development comprises a component which comprises a
setting variable.

129. The tool of claim 128 wherein the component’s type
determines the identity of the setting variable.

130. The tool of claim 128 wherein the initial value of the
setting variable is determined by the template from which
the component is created.

131. The tool of claim 130 wherein the setting variable is
set to its initial value when the program is stopped.

132. The tool of claim 128 wherein a source function’s
input comprises a flow object denoted by a sink of the
source’s component or the value of a state variable of the
component or the value of the setting variable, and a state
function’s input comprises a flow object denoted by a sink
of the source’s component or the value of a state variable of
the component or the value of the setting variable.

133. The tool of claim 86 wherein the processed object
comprises a state variable.

134. The tool of claim 86 wherein the processed object
comprises a setting variable.

135. The tool of claim 86 wherein a component is
configured to receive an event.

136. The tool of claim 135 wherein the event is sent by the
tool.

137. The tool of claim 135 wherein the event is sent by the
user interface of the program under development.

138. The tool of claim 135 wherein the component
comprises a state variable whose value is modified by the
component’s receipt of the event.

139. The tool of claim 86 wherein the program under
development comprises a communication mechanism in
which an aspect of one component is configured to com-
municate with an aspect of another component.

US 6,272,672 Bl

85

140. The tool of claim 86 wherein a function of the
network computation is configured to modify an aspect of
the processed object.

141. The tool of claim 86 comprising a developer inter-
face.

142. The tool of claim 142 wherein the developer inter-
face comprises the user interface of the program under
development.

143. The tool of claim 142 comprising a selection mecha-
nism configured to choose a portion of the network on which
an operation is to be performed.

144. The tool of claim 143 wherein the restriction mecha-
nism interacts with the menu mechanism to modify either
the availability of an opportunity to perform an operation on
the portion of the network or the behavior of the operation.

145. The tool of claim 142 comprising a menu mechanism
configured to present an opportunity to perform an opera-
tion.

146. The tool of claim 86 comprising a data inspection
mechanism wherein an aspect of any of a state variable, a

86

setting variable, or a flow object is projected onto the
developer interface.

147. The tool of claim 86 comprising a program inspec-
tion mechanism wherein an aspect of the network is pro-

5 jected onto the developer interface.

148. The tool of claim 86 comprising a stepping mecha-
nism configured to control and inspect the progress of the
network computation.

149. The tool of claim 148 wherein the stepping mecha-
nism cooperates with the program inspection mechanism to
project on the developer interface information which visu-
ally depicts the state changes of the program under devel-
opment.

150. The tool of claim 86 comprising a type library
comprising a component type.

151. The tool of claim 86 wherein an input of a function
of the network computation comprise an aspect of the
processed object.

