

1-6: Angle Bisector Ray \overrightarrow{BD} bisects $\angle ABC$ means: $\angle ABD$ and $\angle DBC$ have equal measures. This means by definition: $\angle ABD \cong \angle DBC$	B C	For an angle bisector: $\underline{m \angle 1 = m \angle 2}$
1-6: Classifying Angles by	A	Acute angle: measure < 90°
their Measures:		Right angle: measure = 90°
	B	Obtuse angle: 90° < measure < 180°
1-6: Angle Addition Postulate <i>Adjacent angles</i> share a common ray; one angle is not in the interior of the other.		For adjacent angles: $\underline{m \angle 1 + m \angle 2 = m \angle ABC}$
1-6: Straight Angle Two opposing rays.	A B C	For a straight angle: $m \angle ABC = 180^{\circ}$
1-7: Vertical Angles are congruent	23 22	When two lines cross: Two vertical angles: $m \ge 1 = m \ge 2$
A pair of intersecting lines forms two opposite pairs of vertical angles. Vertical angles		$\boxed{m \angle 3 = m \angle 4}$ Four linear pairs:
have equal measures and are therefore congruent. Corollary: Perpendicular lines intersect to	← ↓	$\frac{m \angle 1 + m \angle 3 = 180^{\circ}}{m \angle 3 + m \angle 2 = 180^{\circ}}$ $\frac{m \angle 2 + m \angle 4 = 180^{\circ}}{m \angle 2 + m \angle 4 = 180^{\circ}}$
form four right angles.		$\underline{m \angle 4 + m \angle 1 = 180^{\circ}}$
Linear Pair Two adjacent angles are a linear pair when they form a straight angle. $\angle 1$ and $\angle 2$ are also supplementary	21 22	For a linear pair: $\underline{m \angle 1 + m \angle 2 = 180^{\circ}}$
1-7: Supplementary Angles Two angles are supplementary if their measures sum to 180°. ∠1 and ∠2 need not be adjacent.		For supplementary angles: $m \angle 1 + m \angle 2 = 180^{\circ}$
1-7: Complementary Angles Two angles are complementary if their measures sum to 90°. $\angle 1$ and $\angle 2$ need not be adjacent.		For complementary angles: $\underline{m \angle 1 + m \angle 2 = 90^{\circ}}$

Chapter 2: Logic and Proof

Propositions and IFTHEN Statements			
A Proposition is any statement that is either true or false			
A Conditional Statement (or IFTHEN statement) is itself a proposition.	Form of the Conditional Statement: (<i>Hypothesis</i> and <i>conclusion</i> can be any propositions) IF hypothesis THEN conclusion	Conditional Statements are the tools you use to make new true propositions. You use them this way: IF the hypothesis is true THEN the conclusion is true	
	Constructing New Propos	sitions	
We describe the two Construction Rules	 (▲, ■, and ● are placeholders for any propositions) Inputs: If you have these two 		
this way	Result: You may then write this		
The Detachment Construction Rule	IF ▲ THEN ■	Conditions for using Detachment: 1. An IFTHENstatement 2. Any proposition 3. The proposition matches the hypothesis of IFTHENstatement	
		Then you can state by itself the (detached) ■ conclusion of the IFTHENstatement. Notice that the matching ▲ s do not appear in the result.	
The Syllogism Construction Rule	IF ▲ THEN ■ IF ■ THEN ● IF ▲ THEN ●	Conditions for using Syllogism: 1. A first IFTHENstatement 2. A second IFTHENstatement 3. Conclusion of first IFTHENstatement matches hypothesis of second IFTHENstatement Then you can state a new IF ▲ THEN ● statement using the hypothesis of the first and the conclusion of the second.	
		Notice that the matching \blacksquare s do not appear in the result.	

Properties of Equality of Real Numbers In the following, <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> can stand for any real number, except that $d \neq 0$.			
Reflexive Property	a = a	Every number equals itself.	
Symmetric Property	IF $a = b$ THEN $b = a$	You can switch the two sides of an equation.	
Transitive Property	IF <i>a</i> = <i>b</i> and <i>b</i> = <i>c</i> THEN <i>a</i> = <i>c</i>	You can chain equations together leaving out the middle parts, if the middle parts are the same.	
Subtraction and Addition Properties	IF $a + b = c$ THEN $a = c - b$ IF $a - b = c$ THEN $a = c + b$	You can subtract the same number from both sides. You can add the same number to both sides. <i>You can jump a term over the</i> <i>equal sign if you change its</i> <i>sign</i> . (Terms are numbers that are being added or subtracted.)	
Division and Multiplication Properties	IF $d \bullet a = b$ THEN $a = \frac{b}{d}$ IF $\frac{a}{d} = b$ THEN $a = b \bullet d$	You can divide both sides by the same <i>nonzero</i> number. You can multiply both sides by the same number. <i>You can jump a nonzero</i> <i>factor over the equal sign if</i> <i>you invert it (change it to its</i> <i>reciprocal).</i> (Factors are numbers that are being multiplied or divided.)	
Substitution Property	IF a = b THEN a and b are interchangeable in any expression or equation	Numbers with equal values can be substituted for each other anywhere. (Notice that this implies the transitive property.)	
Pr	operties of Multiplication an	d Addition	
Distributive Property	$a \bullet (b + c) = a \bullet b + a \bullet c$	Factors get distributed across terms inside the parentheses.	
Commutative Properties	a + b = b + a $a \bullet b = b \bullet a$	You can reverse two added terms or two multiplied factors.	
Associative Properties	a + (b + c) = (a + b) + c $a \bullet (b \bullet c) = (a \bullet b) \bullet c$	In a chain of additions or a chain of multiplications, it doesn't matter which operations you do first.	

Chapter 3: Transversals and angles

Chapter 3: Transversals ar	ia aligies	
"Coconuts" The intersection of two lines creates a cluster of four angles.	Δ $O + \Delta = 180$	O + ∆ = 180
"Double Coconuts" A transversal intersecting two lines creates two clusters of four angles each. In these formulas it is assumed that $m \parallel n$. If you know any one angle you know all eight.	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	O + Δ = 180 All acute angles are congruent (equal). All obtuse angles are congruent (equal). Any obtuse and any acute angle are supplementary (they total 180).
"Perpendicular Double Coconuts" $m \parallel n \text{ and } p \perp n \text{ (or } p \perp m \text{)}$	$\overset{\overset{\overset{}{}}{}^{p}}{\overset{}{}}^{m}$	If any one angle is 90° then all eight angles are 90°.
3-1, 3-2: Angle pairs	I	
Corresponding Angles		Corresponding angles are congruent (equal).
Consecutive Interior Angles		Consecutive Interior angles are supplementary (they total 180).
Alternate Interior Angles		Alternate Interior angles are congruent (equal).
Alternate Exterior Angles		Alternate Exterior angles are congruent (equal).
3-3: Slope		
Sign of Slope Figure the absolute value $\left \frac{\Delta y}{\Delta x}\right $ and then attach the sign.	+ - 0	Positive rises to the right. Negative falls to the right. Horizontal line has zero slope. Vertical line has undefined slope.
The Slope Formula Or use the slope formula to get both sign and value at once.	$A \xrightarrow{(x_A,y_A)} \xrightarrow{(x_B,y_B)} \xrightarrow{(x_B,y_B)}$	" Δ " is not a number; it is pronounced "delta" and means "the change in": $\Delta y = y_B - y_A$ $\Delta x = x_B - x_A$ The <i>slope formula</i> : Slope of $\overline{AB} = \frac{\Delta y}{\Delta x}$

4-1: Classify Triangles by their Angles

, , ,	aleli Aligies	
Acute Triangle		All three angles are acute (they have measures less than 90°).
Right Triangle		One angle is a right (90°) angle. There can not be more than one right angle in a triangle.
Obtuse Triangle		One angle is obtuse (it has a measure greater than 90°). There can not be more than one obtuse angle in a triangle.
Equiangular Triangle		All three angles are congruent (equal).
4-1: Classify Triangles by	their Sides	
Scalene Triangle		No two sides are congruent. (All sides are different.)
Isosceles Triangle	\bigtriangleup	At least two sides are congruent (equal).
Equilateral Triangle		All three sides are congruent (equal). (An equilateral triangle is also an isosceles triangle.)
4-2: Measuring Angles in T	Triangles	
Angle Sum Theorem		$\Delta + \oplus + \blacksquare = 180^{\circ}$ The sum of the measures of the interior angles of a triangle is 180°.
Exterior Angle Theorem		$\Delta = \mathbf{O} + \mathbf{I}$ The measure of an <i>exterior</i> angle of a triangle is equal to the sum of the measures of the two <i>remote</i> interior angles.

4-3: Congruent Triangles

4-3: Congruent Triangle		
Correspondence Between Two Triangles (↔ means "corresponds to")		$\Delta ABC \leftrightarrow \Delta DEF$ means all of these: $\angle A \leftrightarrow \angle D \qquad \overline{AB} \leftrightarrow \overline{DE}$ $\angle B \leftrightarrow \angle E \qquad \overline{BC} \leftrightarrow \overline{EF}$ $\angle C \leftrightarrow \angle F \qquad \overline{CA} \leftrightarrow \overline{FD}$
Congruence Statement C.P.C.T.C.: Corresponding Parts of Congruent Triangles are Congruent (definition of triangle congruence)	$A \rightarrow C \qquad F \rightarrow C \rightarrow C \qquad F \rightarrow C \rightarrow C \qquad F \rightarrow C \rightarrow$	$\Delta ABC \cong \Delta DEF \text{ means:}$ $\Delta ABC \leftrightarrow \Delta DEF$ and all of these: $\angle A \cong \angle D \qquad \overline{AB} \cong \overline{DE}$ $\angle B \cong \angle E \qquad \overline{BC} \cong \overline{EF}$ $\angle C \cong \angle F \qquad \overline{CA} \cong \overline{FD}$
4-4, 4-5: Congruence P	ostulates and Theorem	
SSS Postulate Side-Side-Side		<i>I</i> f the three sides of one triangle are congruent to the three sides of a second triangle, then the two triangles are congruent.
SAS Postulate Side-Angle-Side		If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.
ASA Postulate Angle-Side-angle		 If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.
AAS Theorem Angle-Angle-Side		If two angles and a <i>non-included</i> side of one triangle are congruent to the <i>corresponding</i> two angles and side of a second triangle, then the two triangles are congruent.
4-6: Isosceles Triangle	I neorems	
(At least) Two Sides Congruent then opposite angles congruen		Stated in terms of number equality: IF $AB = BC$ THEN $m \angle C = m \angle A$ Stated in terms of congruence: IF $\overline{AB} \cong \overline{BC}$ THEN $\angle C \cong \angle A$
(At least) Two Angles Congrue then opposite sides congruent	nt A C	Stated in terms of number equality: IF $m \angle C = m \angle A$ THEN $AB = BC$ Stated in terms of congruence: IF $\angle C \cong \angle A$ THEN $\overline{AB} \cong \overline{BC}$

5-1 Special Segments in Triangles

Definition: Perpendicular Bisec of a Triangle		A Perpendicular Bisector of a Triangle is a line or segment perpendicular to a side of the triangle that intersects the side at its midpoint.
Definition: Median of a Triang	le	A Median of a Triangle is a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite side.
Definition: Altitude of a Triang	le	An Altitude of a Triangle is a segment perpendicular to a side of the triangle, one of whose endpoints is the vertex of the angle opposite that side and the other of whose endpoints is on the line containing the side.
Definition: Angle Bisector of a Triangle		An Angle Bisector of a Triangle is a segment that bisects an angle of the triangle, one of whose endpoints is the vertex of the angle and the other of whose endpoints is on the side opposite that angle.
Theorems 5-1, 5-2: (5-1 and 5-2 are converses ceach other)	of A H B	5-1: Any point on the perpendicular bisector of a segment is equidistant from the endpoints of the segment.5-2: Any point equidistant from the endpoints of a segment lies on the perpendicular bisector of the segment.
Theorems 5-3, 5-4: (5-3 and 5-4 are converses ceach other)	f	5-3: Any point on the bisector of an angle is equidistant from the sides of the angle.5-4: Any point on or in the interior of an angle and equidistant from the sides of an angle lies on the bisector of the angle.
5-2 Right Triangles		1
Theorem 5-5: LL Congruence		If the two legs of one right triangle are congruent, respectively, to the two legs of another right triangle, then the triangles are congruent.
Theorem 5-6: HA Congruence	≅	If the hypotenuse and an acute angle of one right triangle are congruent, respectively, to the hypotenuse and an acute angle of another right triangle, then the triangles are congruent.
Theorem 5-7: LA Congruence		If one leg and an acute angle of one right triangle are congruent, respectively, to a leg and <i>corresponding</i> acute angle of another right triangle, then the triangles are congruent.
Postulate 5-1: HL Congruence		If the hypotenuse and a leg of one right triangle are congruent, respectively, to the hypotenuse and a leg of another right triangle, then the triangles are congruent.

5-3 Inequality

	coperties of Inequality of Rea llowing, <i>a</i> , <i>b</i> , and <i>c</i> can stand for any real num	
Definition of	a < b	a < b means that a is to the left of b onthe real line. $a < b$ if and only if there is a positivenumber c such that $a + c = b$. $a < b$ and $b > a$ are the same statement.
Inequality	a > b	a > b means that a is to the right of b onthe real line. $a > b$ if and only if there is a positivenumber c such that $a = b + c$. $a > b$ and $b < a$ are the same statement.
Comparison Property	a < b, a = b, or a > b	Exactly one of these three must be true.
Transitive Property	IF a < b and b < c THEN a < c IF a > b and b > c THEN a > c	You can chain the same inequalities together leaving out the middle parts, if the middle parts are the same number.
Addition and Subtraction Properties	IF a > b THEN a +c > b + c and a − c > b - c IF a < b THEN a +c < b + c and a − c < b - c	 You can subtract the same number from both sides. You can add the same number to both sides. You can jump a term over the equal sign provided that you change its sign. (Terms are numbers that are being added or subtracted.)
Multiplication and Division Properties	IF $c > 0$ and $a < b$ THEN $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$ IF $c > 0$ and $a > b$ THEN $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$ IF $c < 0$ and $a < b$ THEN $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$ IF $c < 0$ and $a < b$ THEN $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$ IF $c < 0$ and $a > b$ THEN $ac > bc$ and $\frac{a}{c} < \frac{b}{c}$ IF $c < 0$ and $a > b$ THEN $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$	You can multiply and divide both sides by the same <i>positive</i> number. You can multiply and divide both sides by the same <i>negative</i> number <i>provided that you reverse the</i> <i>inequality</i> .

IF h THEN c	 Assume that the conclusion <i>c</i> is false. Show that this assumption leads to a contradiction of the hypothesis <i>h</i> or of some other proposition known to be true. The assumption must be incorrect; therefore the conclusion <i>c</i> is true.
24 23	If an angle is an exterior angle of a triangle, then its measure is greater than the measure of either of its remote interior angles. $m\angle 4 > m\angle 2$; $m\angle 4 > m\angle 3$
and Angles of a Triangle	
Smallest Middle	5-9: If one side of a triangle is longer than another side, then the angle opposite the longer side has a greater measure than the angle opposite the shorter side.5-10: If one angle of a triangle has a greater measure than another angle, then the side opposite the greater angle is longer than the side opposite the lesser angle.
P L	The perpendicular segment from a point to a line is the shortest segment from the point to the line.
/	1
oops!	Given any two sides of a triangle, the sum of the lengths of these two sides is greater than the length of the third side. Given a triangle any two of whose sides measure a and b , the third side, c , must be between these limits: a - b < c < (a + b) In particular, if a and b are the longest two of the three sides, a - b < c
	and Angles of a Triangle

(if two sides of one are respectively congruent to two sides of the other)

Quadrilateral Family Tree

Parallelogram

Parallelogram		
1. Area		$A = b \bullet h$
2. Opposite Sides are Parallel		$\overline{AB} \parallel \overline{CD}, \ \overline{DA} \parallel \overline{BC}$
3. Each Diagonal Bisects the Other		AM = MC DM = MB M is the midpoint of \overline{AC} and of \overline{BD}
4. Opposite Sides are Congruent		AB = CD $DA = BC$
5. Opposite Vertex Angles are Congruent		$m \angle A = m \angle C$ $m \angle B = m \angle D$
6. Consecutive Vertex Angles are Supplementary	$ \begin{array}{c} A \\ \overline{a^{\circ}} \\ b^{\circ} \\ \overline{b^{\circ}} \\ \overline{a^{\circ}} \\ \overline{c} \end{array} $	a + b = 180 b = 180 - a a = 180 - b
7. Vertical Angles Formed by the Intersection of Diagonals are Congruent		$m \angle AMD = m \angle CMB$ $m \angle BMA = m \angle DMC$
8. Adjacent Angles Formed by the Intersection of Diagonals are Supplementary	$A \xrightarrow{\qquad b^{\circ} a^{\circ} b^{\circ}} B$ $D \qquad c$	a + b = 180 b = 180 - a a = 180 - b
9. Alternate Interior Angles Formed by the Diagonals as Trans- versals Intersecting the Sides are Congruent		$m \angle MDA = m \angle MBC$ $m \angle MDC = m \angle MBA$ $m \angle MAD = m \angle MCB$ $m \angle MAB = m \angle MCD$

Rectangle (Rectangle inherits properties from Parallelogram)

	mients properties nom	' ai aii	ologi alli
10. Area	♠ <i>h w</i>	→	$A = b \cdot h$
11. The Diagonals ar Congruent, and the Semi-diagonals are Mutually Congruent	M	$\begin{bmatrix} B \\ C \end{bmatrix}_{C}^{B}$	AC = BD AM = BM = CM = DM M is the midpoint of \overline{AC} and of \overline{BD}
12. Vertex Angles ar Right Angles		B	$m \angle A = m \angle B = m \angle C = m \angle D = 90^{\circ}$
13. Triangles Formed By Diagonals and Sides Are Isosceles		\mathbf{A}_{C}^{B}	$MA = MB$, $m \angle MAB = m \angle MBA$ (etc. for 3 more triangles)
Rhombus (Rhombus i	nherits properties from	Paralle	elogram)
14. Area		$A = \frac{1}{2}d_1 \cdot d_2$	
15. The Four Sides are Mutually Congruent		AB = BC = CD = DA	
16. The Diagonals are Perpendicular to Each Other		$\overline{AC} \perp \overline{BD}$	
17. The Diagonals Bisect the Vertex Angles		$m\angle CAB = m\angle CAD = m\angle ACB = m\angle ACD$ $m\angle DBA = m\angle DBC = m\angle BDA = m\angle BDC$	
Square (Square inheri	Square (Square inherits properties from both Rectangle and Rhombus)		
18. Diagonals and Sides Form 45°- 45°- 90° Right Triangles	A = A = B = B = C		$AB = \sqrt{2} \cdot AM \text{ (etc.)}$ $AC = \sqrt{2} \cdot AB \text{ (etc.)}$
Trapezoid			
19. Area	$ \begin{array}{c} $	→	$A = \frac{1}{2}h(b_1 + b_2)$ (or: $m = \frac{1}{2}(b_1 + b_2)$; $A = m \cdot h$)

7-1: Ratios and Proportions

A "ratio" of two numbers is a fraction	Ratio of <i>a</i> to <i>b</i> is $\frac{a}{b}$			"to b" means b is in the denominator (that is, divide by b; therefore $b \neq 0$). (<i>The archaic notation—sometimes used</i> <i>in the</i> MCAS <i>test—is a:b</i>)
A "proportion" is an equation that equates two ratios.	$\frac{a}{b} = \frac{c}{d}$			(The archaic notation is a:b :: c:d)
Put a solution structure on proportion word problems using this 2x2 grid This method almost always works. It requires thinking of the problem as describing a pair of objects or events, in each of which two measurements are made.	One Thing or EventAnother Thing or EventMeasurement of one partaCMeasurement of another partbdOrUnder the second of		Thing or Event	From the 2x2 arrangement to the left, draw two "—"s and an "=" and write $\frac{a}{b} = \frac{c}{d}$ This works with: 1. shadow problems 2. similar triangle problems 3. recipe resize problems 4. distance-time problems (fixed speed) 5. and others For triangles, use the second form: $\frac{\overline{u}}{\overline{u}} = \frac{\overline{v}}{\overline{u}} = $
Cross products of a proportion are equal	$\frac{a}{b} \times \frac{c}{d}$			Use this rule to solve for the unknown in a proportion: $\frac{a}{b} = \frac{c}{d}$ becomes $a \cdot d = b \cdot c$

7-2: Similar Polygons and Proportions

7-4: Parallel Lines and Proportional Parts of Triangles

	roportional Parts of Triangles	
Triangle Proportionality Theorem: If a line is parallel to one side of a triangle and intersects the other two sides in two distinct points then it separates these sides into segments of proportional length.	a c e b m	Given $\ell \parallel m$: Then $\frac{a}{b} = \frac{c}{d}$ $\frac{a+b}{b} = \frac{c+d}{d}$ (why?) $\frac{a}{c} = \frac{b}{d}$ (why?)
Theorem (converse of above): If a line intersects two sides of a triangle and separates these sides into corresponding segments of proportional lengths then the line is parallel to the third side.		Given $\frac{a}{b} = \frac{c}{d}$ then $\ell \parallel m$.
Theorem: A segment whose endpoints are the midpoints of two sides of a triangle is parallel to the third side of the triangle and its length is one half the length of the third side.		Given: <i>E</i> is the midpoint of \overline{AC} and F is the midpoint of \overline{CD} , Then $\overline{EF} \parallel \overline{AD}$ and $EF = \frac{1}{2}AD$
Corollary: If Three or more parallel lines intersect two transversals then They cut off the trans- versals proportionally		Given: $\ell \parallel m \parallel n$ Then: $\frac{a}{b} = \frac{c}{d}$
Corollary: If Three or more parallel lines cut off congruent segments on one transversal then They cut off congruent segments on every transversal		Given: $\ell \parallel m \parallel n$ and $a = b$ Then: $c = d$

7-5: Parts of Similar Triangles

Proportional Perimeters Theorem: If Two triangles are similar then Their perimeters are proportional to the measures of the corresponding sides	$A \xrightarrow{F}_{E} G \xrightarrow{F}_{G} C$	Given: $\Delta ABC \sim \Delta EFG$ And $EF = AB \cdot f$ (etc) Then: Perimeter $\Delta EFG =$ Perimeter $\Delta ABC \cdot f$
Three Theorems: If Two triangles are similar then The measures of their corresponding Altitudes Medians Angle bisectors are proportional to the measures of the corresponding sides	$A \xrightarrow{B} f \xrightarrow{F} $	Given: $\Delta ABC \sim \Delta EFG$, $EF = AB \cdot f$ (etc), and \overline{BD} and \overline{FH} are altitudes (etc) Then $FH = BD \cdot f$
Angle Bisector Theorem: An angle bisector in a triangle separates the opposite side into segments that have the same ratio as the other two sides	c d b d	$\frac{a}{b} = \frac{c}{d}$

Chapter 8: Right Triangles 8-1: Geometric Mean and the Pythagorean Theorem

8-2: Special Right Triangles

License notice. © Copyright 2005-2008 Mel Conway, Ph.D. This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Copies and derivative works of this document must accurately display its copyright notice.