
Design of a Separable
Transition-Diagram Compiler*

MELVIN E. CoNwAY

Directorate of Computers, USAF
L. G. Hanscom Field, Bedford, Mass.

A COBOL compiler design is presented which is compact

enough to permit rapid, one-pass compilation of a large sub

set of COBOL on a moderately large computer. Versions of

the same compiler for smaller machines require only two work

ing tapes plus a compiler tape. The methods given are largely

applicable to the construction of ALGOL compilers.

Introduction

This paper is written in rebuttal of three propositions
widely held among compiler writers, to wit: (1) syntax
directed compilers [1] suffer practical disadvantages over
other types of compilers, chiefly in speed; (2) compilers
should be written with compilers; (3) CoBoL [2] compilers
must be complicated. The form of the rebuttal is to de
scribe a high-speed, one-pass, syntax-directed CoBOL com
piler which can be built by two people with an assembler
in less than a year.

The compiler design presented here has the following
properties.

1. It processes full elective CoBOL except for automatic
segmentation and its byproducts, such as those properties
of the ALTER verb which are affected by segmentation.
The Verbs DEFINE, ENTER, USE and INCLUDE are accessible
to the design but were not included in the prototype coded
at the Case Computing Center.

2. It can be implemented as a true one-pass compiler
(with load-time fixup of forward references to procedure
names) on a machine with 10,000 to 16,000 words of high
speed storage. In this configuration it processes a source
deck as fast as current one-pass algebraic compilers.

3. It can be segmented into many possible configura
tions, depending on the source computer's storage size,
such that (a) once a segment leaves high-speed storage it
will not be recalled; (b) only two working tapes are re
quired, and no tape sorting is needed. One such configura
tion requires five segments for a machine with 8000 six
bit characters of core storage.

Of course any compiler can be made one-pass if the high
speed storage of the source computer is plentiful enough;
therefore, what this exposition has to offer is a collection
of space-saving techniques whose benefits are real enough

* The work described here was performed at Case Institute of
Technology in 1961 and was supported in part by Univac Di
vision of Sperry Rand Corporation.

396 Communications of the ACM

to make this design (in which all tables are accessed while
stored in memory) practical on contemporary computers.
None of these techniques is limited in application to CoBOL
compilers. The following specific techniques are discussed:
the coroutine method of separating programs, transition
diagrams in syntactical analysis, data name qualification
analysis, and instruction generation for conditional state
ments.

The algorithms described were verified on the 5000-word
Burroughs 220 at the Case Institute of Technology Com
puting Center. A two-pass configuration was planned for
that machine, and first-pass code was checked out through
the syntactical analysis. At the time the project was dis
continued a complete CoBOL syntax checker was operating
at 140 fully-punched source cards per minute. (The Case
220 had a typical single-address instruction time of 100
microseconds.) Remarks presented later suggest that a
complete one-pass version of the compiler, which would
be feasible on a 10,000-word machine, would run at well
over 100 source cards per minute.

Coroutines and Separable Programs

That property of the design which makes it amenable to
many segment configurations is its separability. A program
organization is separable if it is broken up into processing
modules which communicate with each other according to
the following restrictions: (I) the only communication
between modules is in the form of discrete items of in
formation; (2) the flow of each of these items is along
fixed, one-way paths; (3) the entire program can be laid
out so that the input is at the left extreme, the output is at
the right extreme, and e\'erywhere in between all informa
tion items flowing between modules have a component of
motion to the right.

Under these conditions each module may be made into
a coroutine; that is, it may be coded as an autonomous pro
gram which communicates with adjacent modules as if
they were input or output subroutines. Thus, coroutines
are subroutines all at the same level, each acting as if it
were the master program when in fact there is no master
program.1 There is no bound placed by this definition on
the number of inputs and outputs a coroutine may have.

The coroutine notion can greatly simplify the concep
tion of a program when its modules do not communicate
with each other synchronously. Consider, as an example, a
program which reads cards and writes the string of char
acters it finds, column 1 of card 1 to column 80 of card 1,
then column 1 of card 2, and so on, with the following
wrinkle: every time there are adjacent asterisks they will
be paired off from the left and each "**" will be replaced
by the single character " j ". This operation is done with
the exponentiation operator of FoRTRAN and CoBOL. The
flowchart of such a program, viewed as a subroutine pro-

1 To the best of the author's knowledge the coroutine idea was
concurrently developed by him and Joel Erdwinn, now of Com
puter Sciences Corporation.

Volume 6 I Number 7 I July, 196~

viding characters to a main routine which calls it, is shown
. lllF· 1 m.:. 1 1gure .

Notice that the simple requirement of compressing
asterisks reqmres the introduction of a switch which

FIG. 1. Asterisk squasher subroutine with environment.
SWITCH is initialized OFF; i is initialized to 81; OUT is output
area of SQUASHER.

FIG. 2. Asterisk squasher as coroutine. First entrance is to 1.

Volume 6 I Number 7 I July, 1963

bifurcates the subroutine and selects the part to be used
at each call depending on the situation at the last call. The
reason for the switch is that each call of the subroutine must
result in output of exactly one character. A programmer well
versed at inventing counterexamples could dream up a
requirement for a subroutine which would necessitate an
absurd arrangement of switches in order to preserve the
one-output-for-each-call relationship required of the sub
routine.

The coroutine approach to the same problem accom
plishes the switching job implicitly by use of the subrou
tine calling sequence. When coroutines A and B are con
nected so that A sends items to B, B runs for a while
until it encounters a read command, which means it needs
something from A. Then control is transferred to A until
it wants to "write," whereupon control is returned to B
at the point where it left off. Figure 2 shows the asterisk
squasher when both it and the using program are corou
tines.

Figure 3 illustrates the essence of separability. Instead
of having modules A and B communicating as coroutines
with a coroutine linkage between write statements in A
and read statements in B such that control is passed back
and forth once each time an item is transferred, it is possi
ble without changing anything in A or B except the read and
write linkages to have A write all its items on a tape, to
rewind the tape and then to have B read all the items from
the tape. In this sense, then, the pair of programs A and B
can operate as a one-pass or a two-pass processor with
only trivial modification.

As background, the coroutine linkage on the Burroughs
220 is described here. The 220 is a sequential, single-address
machine with the sequence counter called the P-register;
during the execution of an instruction it contains the loca
tion of the next instruction to be fetched. Unless the cur
rent instruction causes the machine to branch, the P
register will contain one plus the location of the current
instruction. The UNCO~DITIONAL BRANCH instruc
tion BUN A works by placing its address A into
the P-register. The STORE P instruction STP B
places the contents of P plus one into the address part of
the contents of location B. The standard subroutine call is

B.

A.

STP EXIT
BUN ENTRAXCE

~
~ I

I
I

r-------------------1
I I
I I

L-------------------~

FIG. 3. Illustration of a property of separable programs.
A. A and B, linked as coroutines, communicate directly.
B. A writes its entire output before B reads anything.

Communications of the ACM 397

where EXIT contains a BUN instruction whose address
will be altered by the STP instruction in the call. A pair of
subroutines becomes a pair of coroutines by adding to each
an isolated BUN instruction which we can call its router,
and by changing the addresses of the STP, BUN calls as
follows: when coroutine A calls coroutine B the call is

STP AROUTER
BUN BROUTER.

Thus, the router is actually a generalization of the switch
of Figure 1. Getting a system of coroutines started is a
matter of properly initializing the routers.

Figure 3 shows that the coroutines of a separable pro
gram may be executed alternately or serially. When true
parallel processors are available the fact that the coroutines
of a separable program may be executed simultaneously be
comes even more significant.

COBOL Compiler Organization

Figure 4 presents the coroutine structure of the CoBoL
compiler designed at Case. The program is separable under
the condition that the two pairs of modules which share
tables are considered to be a single coroutine.

The reader is asked to understand that the present
treatment is concerned more with exposition than com
pleteness. A more thorough treatment would not ignore
COPY, pictures, and literals, for example. Let it suffice
to say that these features can be accommodated without
any significant design changes over what is presented here.

In Figure 4 solid arrows are communication paths be
tween coroutines; dashed arrows show access to tables.
When the dashed arrow points to a table the latter is being
built; when the dashed arrow points away the table is
supplying values to the using coroutine. The specific opera
tions performed by the coroutines will be discussed in the
following four sections.

Lexical Analysis

The input, on line B of Figure 4, to the Diagrammer con
sists of (one-word) items denoting either names or CoBOL
basic symbols. The class of basic symbols, over 300 ele
ments in size, consists of all characters of the source alpha
bet (other than numerics, alphabetics, hyphen in names,
and space) together with all the CoBoL reserved words and

the paragraph symbol ~. (This internal special symbol is
inserted by the card scanner whenever card column 8 is
not blank. Such a device converts many format recogni
tion problems to syntax analysis problems.) The lexical
analysis process embodied in the Basic Symbol Reducer
and the Name Reducer converts the source program into
a sequence of integer-coded one-word items in one-to-one
correspondence (with the exception of ~) with the words
and special characters of the source program.

The Basic Symbol Reducer analyzes the input string
by what is essentially a character-pair analysis, but the

TABLE 1
Class Character

0 012 ... 789
1 ABC··· XYZ
2
3 b (space)
4 * I
5
6
7 II

8 "if (
9)
X +

TABLE 2
Right Character R

0-9
A-Z

lil b
~ =*!
il

..d
Q

1)
~ If(

) 9

+ X

Functions:
1. S +--- SL

0-9

0

2. S +--- empty

A-Z b =*!
2 3 4

1 3
1 3
1 6
2 5

3. Function 1, then write S

II

5 6 7

3 1
3 1

2 4

5 5

6 6

4. Enter non-numeric literal scanner
5. Do nothing
6. Write L, then function 2

If(

8

5

7. If LR = "**"then R +--- "i" else error
Blank: error
S is a string accumulator

+
9 X

OloJECT
PROGRAM

Fw. 4. COBOL Compiler Organization

398 Communications of the ACM Volume 6 I Number 7 I July, 196~

character pair matrix (for the IBM "H" set) need not be
49 X 49 but only 11 X 11 since there are only eleven
operationally different types of characters. These types are
listed in Table 1, the Character Class Table. Furthermore,
only three bits are required for each entry of the Char
acter Pair Matrix, which occupies eleven words on the 220.
Table 2 shows the matrix with the set of actions taken for
each character pair.

The Reserved Word List and Name Table were built
for the 220 according to a method of F. A. Williams [3].
When the source machine has an adequate memory both
tables can be combined into one, initialized to the set of
reserved words. On line A of Figure 4 all the reduction has
taken place except that names are in a fixed 30-character
plus-identification format.

In light of the organization of the compiler into lexical
analysis, syntactic analysis and synthesis (including data
storage allocation in the Data Division and code genera
tion in the Procedure Division), with the three in series
there is a clear-cut strategy for getting both high com
piling speed and low space consumption from the one-pass
version of the design: make the lexical analysis as fast as
possible even at the expense of some space, and make the
rest as compact as possible even at the expense of speed.
This is explained by the simple fact that most of the time
is spent in lexical analysis. In our experience with the pro
totype we found that the input speed difference between
lexical analysis alone and lexical plus syntactical analysis

liS [NOT] GREATER THAN)
IS [NOT] LESS THAN

condition: IF formula IS [NOT] EQUAL TO formula
EQUALS
EXCEEDS

FIG. 5. CoBOL-like definition of condition

condition:

EXCEEDS

GREATER

FIG. 6. Transition diagram definition of condition

Volume 6 I Number 7 I July, 1963

was about ten percent. It appears that nothing short of
pure sabotage can be done to the syntactical analysis and
synthesis portions to slow the whole compiler down to less
than 75 percent of the speed of the lexical analysis routine
alone; hence our name "Seventy-five Percent Rule" for
this strategy.

Syntactical Analysis

An abbreviated definition of condition is given for this
exposition in Figure 5. Keep in mind that the syntactical
analyzer (Diagrammer) sees single symbols entering it for
things we call IF, IS, NOT, data-name, and so on. Call these
symbols which are input to the diagrammer input symbols.
Observe, then, that any sequence of input symbols prop
erly called a condition must correspond to one of five paths
through the condition definition, starting at the left IF and
ending at the right formula, each path corresponding to a
particular choice of relation. If the Diagrammer is thought
of as having a window which displays each input symbol as
it comes from the lexical analyzer, the definition of a syn
tactic type like condition is a rule for predicting, for each
input symbol in the window, what the legal set of suc
cessors of that symbol is. A transition diagram is a formali
zation of this notion of what a definition is. Figure 6 shows
the diagram equivalent to the definition of Figure 5.

A transition diagram is a network of nodes and directed
paths with two distinguished types of nodes: an entrance
node (usually drawn at the top) has at least one path lead
ing from it, and an exit node (labeled "X") has at least
one path leading to it and no paths leading from it. Every
transition diagram defines a syntactic type which is not an
input symbol, and every such syntactic type has one transi
tion diagram which defines it. A transition diagram has
exactly one entrance node and at least one exit node.

Each path is said to be blank (as, for example, one path
leading from node 3 to 4 in Figure 6) or to have a symbol
on it. The symbol is either an input symbol, or else it is a
syntactic type defined by a transition diagram. (We use
capitalized words on the paths for reserved words and
lowercase words for names and syntactic types.) No two
paths leading from a node may be blank or may have the
same symbol on them. No transition diagram may have a
sequence of blank paths leading from the entrance to an
exit node. The set of blank paths may contain no loop.

There will be one transition diagram labeled (that is,
defining) COBOL program. The Diagrammer starts at its
entrance node. The object is to get to an exit node; to have
done so implies that a CoBOL program has traveled past
the window of the Diagrammer. Similarly, getting from the
entrance to an exit of any transition diagram means that
the corresponding syntactic type has been traversed.

The rules of the Diagrammer for leaving a node are as
follows.

STEP 1. Examine all paths leaving the node which have input
symbols on them. If there is a match with the symbol in the
window, read the next input symbol into the window and tra
verse the path. Now go to Step 5.

Communications of the ACM 399

STEP 2. If there was no match in Step 1, try each remaining
nonblank path leaving the .node. Each path will correspond
to some transition diagram. The path may be traversed if and
only if it is possible to get from the entrance to an exit of that
diagram. This is attempted by pushing down in a last-in-first
out stack called the linkage stack the current node number and
then going to Step 1 for the entrance node of the particular
transition diagram being tried.

STEP 3. If there was no match in Step 2 and there is a blank
path leading from the node, follow it and go to Step 5.

STEP 4. If Step 3 was unsatisfied the Diagrammer is at a dead end.
If the linkage stack is nonempty this condition is a failure to
traverse, in Step 2, a particular path corresponding to the
t_ransition diagram in which the dead end occurs. Pop up the
linkage stack, reposition the window to the symbol present
when the diagram was entered, and try another path in Step 2.
If the linkage stack is empty a syntactical error exists in the
input string.

STEP 5. There are two cases.
a. The path just traversed does not end at an exit node. Go to

Step 1 for this new node.
b. Otherwise, pop up the linkage stack, return to the node

whose number was at the top of the stack, and traverse the
path corresponding to the diagram just exited. Now go back
to Step 5.

The above procedure constitutes the entirety of that
part of the Diagrarruner which checks syntax.

Recall the condition that no two paths leading from the
same node may have the same symbol on them. The follow
ing question arises: What if two paths leading from the
same node have syntactic types on them, and the two
transition diagrams defining these types have paths lead
ing from the entrance nodes which have the same symbol
on them? If this happens, then with certain pathological
languages the interpretation of a given input string might
depend on the order in which the paths leading from a
node are tried. Indeed, the same problem can occur if this
nonuniqueness exists at a deeper level than the first. Be
cause it is desirable not to have to worry about this prob
lem, let us consider it now in more detail.

Two conditions on a system of transition diagrams are
presented and their effects on regularizing languages are
discussed. The first condition, called the "No-Loop Condi
tion," says that no transition diagram will make a refer
ence to itself (i.e. it will not have a path with the syntactic
type which it defines) without having first read an input
symbol after it was entered. For, if after entering a transi
tion diagram defining syntactic type t no input symbol has
been read when an attempt is made to traverse a path with
t on it, a periodic (infinite loop) condition exists. And only
then does an infinite loop exist, since if the input string is
finite a loop which reads-input symbols will terminate.

The second condition, called the "No-Backup Condi
tion," defines away any need to specify an order in which
the nonblank paths leading from a node should be tried.
Every path has associated with it a set of input symbols,
called its set of initial input symbols, defined as follows.
When the path has a syntactic type on it an input symbol
is an initial input symbol if and only if when it is in the
input window and the transition diagram defining the syn-

400 Communications of the ACM

t~ctic type on the p~th in question is entered, that symbol
will be read before mther a dead end occurs or the diagram
is exited. The class of initial input symbols of a blank path
is empty, and the class of initial input symbols of a path
with an input symbol on it is the one-element class con
taining that symbol. The No-Backup Condition says that
the No-Loop Condition holds and that for every node in
the system of transition diagrams the sets of initial input
symbols of all the paths leading from that node are dis
joint. For, if the classes of initial input symbols for all the
nonblank paths leading from a node are disjoint, then the
classes of input strings which enable the respective paths
to be traversed will be disjoint, and therefore the order in
which these paths are tried will be irrelevant. The No
Backup Condition is clearly stronger than it has to be in
order to obtain independence of order of testing, but this
condition confers another property on a system of transi
tion diagrams which is to be sought: such a system of dia
grams will never require backing up the input string during
scanning. All nonerror dead ends encountered within any
transition diagram will be encountered before any input
symbol is read; thus the response to a dead end in Step 4
(when the linkage stack is nonempty) is simply to pop up
the stack and try another path in Step 2, without reposi
tioning the window. In fact the tests of Steps 1 and 2 may
be freely intermixed.

The No-Backup Condition makes error indication more
specific because an error dead end can be immediately dis
covered without first emptying the linkage stack by the
fact that at least one symbol has been read since entering
the transition diagram harboring the dead end.

In a sense, the No-Backup Condition is a device for
legislating out of existence the ambiguity problem [4] in
languages defined by transition diagrams. The crucial
point here is that the syntax of CoBOL-61 and AwoL-60
may be defined by transition diagrams which satisfy the
No-Backup Condition. A one-pass compiler for either of
these languages which is constructed according to the
Seventy-five Percent Rule and which uses No-Backup
transition diagrams will be competetive in both compiling
speed and memory space with a compiler of any other con
temporary design.

The catch in all this is that a set of Ko-Backup diagrams
for a given language is constructed by a process which is
neither straightforward nor easy to describe. The CoBOL
condition, for example, may begin with a left parenthesis
which can surround an entire condition or just the left
formula of a relational test. To expose the subtleties of the
construction of No-Backup diagrams, we change the defi
nition of condition in Figure 5 to retain only the essentials.
Further, we define formula. These are both done in Figure
7. Examples of conditions are (A = B), A = B, ((A+ B) =

C), (A + B) = C, and so on.2 An equivalent set of No
Loop transition diagrams are given in Figure 8.

2 The presence of the IF, strictly speaking an error in the
COBOL manual as well as Figure 5, has been eliminated in Figure
7.

Volume 6 I Number 7 / July, 1963

This is not a set of No-Backup definitions, however, be
cause encountering an initial left parenthesis gives no in
dication whether it surrounds the entire condition or just
the left formula. Consider (A + B) = C. The sequence of
transitions will be as follows.

1---+2 read (
1 enter condition
6 enter formula
9 enter term

12---+ X read A
9 ---+ 10 primary traversed

10---+X + is not*
6--->7 term traversed
7---+8 read+
9 enter term

12---+ X read B
9 ---+ 10 primary traversed

10---+ X) is not *
8---+7 term traversed

'
7---+ X) is not+
1---+4 formula traversed

condition: { io~:nu~~ti~n f~rmula}
formula: {~~~:ula +term I
term:

term * primary !primary

data-name
primary:

(formula)

FIG. 7. Another definition of condition

formula:

term:
9

FIG. 8. No-Loop definitions equivalent to Fig. 7

Volume 6 I Number 7 I July, 1963

At this point the Diagrammer reaches a dead end. The
condition can only be scanned directly if the input is
backed up and the first transition is made 1 ~ 4, not 1 ~ 2.

The difficulty is that formula can also begin with "(";
to scan without backup means that to go down a path with
a "(" on it should not involve a committment that the
string being scanned is a condition and not a formula, or
vice versa. Thus a solution is to introduce a multiple-exit
transition diagram so that all syntactic types beginning
with the same input character are defined by that diagram;
the different syntactic types result in different exits, la
beled XI or X2. Figure 9 defines condition this way.

There is little else to the Diagrammer except the genera
tion of Polish. This is accomplished by little subroutines
called actions which are activated when certain paths are
traversed. Figure 10 gives the actions required to create
trailing-operator Polish from formulas. Remember that an
action on a path with a syntactic type is executed after the
corresponding transition diagram is exited. The actions
for translation of ALGOL into the intermediate language
suggested by Grau [5] would be as simple as Figure 10
suggests.

In a computer representation each path is represented
by an item occupying one word or less, if possible. All

~:flats it: cp--<
0

formula

EXIT 2• condition

Fw. 9. No-Backup diagram to replace the condition diagram of
Fig. 8.

Communications of the ACM 401

paths from a given node are grouped together and a node
number, instead of being an element of a sequential set of
integers, is the address of the first path word of that node.
A given path word contains a final node number, an action
number, a bit to distinguish between input symbols and
syntactic types, an input symbol or syntactic type num
ber (in the latter case, the number of the entrance node),
and a bit to distinguish the last path from a node. (If this
path is blank its word can be eliminated simply by be
ginning the node to which it would connect in its place.)
Exit nodes are represented by special one-word items.
Clearly, if the syntax is to be coded in the programming
language using the advantages of symbolic addressing
(and this is most desirable), then an unusual programming
system is required for building a transition-diagram com
piler. Macros may be useable in this connection but would
be cumbersome if they are processed slowly. The Case
assembler was given a definable operation with specifiable
operand fields to implement symbolic coding of the syntax.

The No-Backup Condition removes ambiguity in the
task of syntax recognition. There is no reassurance that the
introduction of multiple-exit diagrams confers the same
blessings on the translation task. What if, for example, the
actions associated with the several syntactic types of a
multiple-exit diagram were very different? There would
still be an ambiguity in the generation of Polish. The an
swer to this question is that in the general case the prob
lem is real; with ALGOL and CoBOL it does not exist.

Data Structure Analysis3

Consider the processing of Data Division item descrip
tions by the Data Description Processor. Each clause gen
erates an operator in the Polish string which is passed along
line C of Figure 4, accompanied perhaps by a numerical
parameter like size. These clause operators are used to
build description vectors which are then completed and
checked according to a method given in another article
[6]. The final item description vector and other non
Boolean-valued declared parameters such as size and point
location are then given on path E to the Data Property
Recorder which allocates storage for the object-program
item and sequentially adds an entry to the Data Definition
Table. At this time the index into the Data Definition
Table of the entry just added is sent on line G to the Data
Structure Recorder which controls its insertion into the
Tree Table.

The Data Structure Recorder handles qualification of
data names by means of the Tree Table. We now consider
the techniques used therein, because they are crucial to
the one-pass handling of qualified names. First, observe
that the purpose of the Tree and Data Definition tables is
to supply enough information along with each data name
in the Procedure Division Polish to enable the Generator

8 Added in proof. The author has learned that Harold W. Law
son, Jr. of IBM Poughkeepsie delivered at the 1962 ACM Confer
ence a paper containing most of the material in this section: The
Use of Chain List Matrices for the Analysis of COBOL Data
Structures.

402 Conununications of the ACM

to generate complete code. The Polish written during the
Procedure Division follows path F to the Data Structure
Interpreter where sufficiently qualified names (which are
actually sequences of integer indices into the name table)
pick up new single integer values which are one-to-one
with declared object-program data items, not with one
word names, as in the Williams algorithm [3]. This final
integer value for each item is actually the index which
came down path G when the Data Definition Table entry
for that item was created. That is, this new representation
of the data item name can be loaded into an index register
to access directly from the Data Definition Table all the
important information about the item. The procedural
Polish moves along path H to the Data Property Inter
preter, where this access operation is performed and the
new name of each data item is replaced by the set of proper-

formula:

ACTIONS=

I. WRITE 11+11

2. WRITE 11*11

3. WRITE THE DATA-NAME

FIG. 10. Actions whose numbers are in square boxes generate
trailing-operator Polish.

POINTER TREE

FIG 11. Structure of data and data-names in example

Volume 6 I Number 7 I July, 1963

ties of this item. The procedural Polish then enters the
Generator along path K. The Generator can create com
plete data-handling code because accompanying each
operand in the Polish is a complete description of the
corresponding object-program item.

Consider the following hypothetical data structure:

FD A
01 B

03 J
03 K

04 c
04 J

03 D
01 c

02 J
02 D

Assume further that the internal representations given by
the Williams Name Reducer are as follows:

A: 31
B: 32
C: 33
D: 34
J: 40
K: 41.

The structural relationships are shown by the solid lines
of Figure 11. This structure can be represented by the
following tree table:

Loc Name Up

001 A 31 000
002 B 32 001
003 J 40 002
004 K 41 002
005 c 33 004
006 J 40 004
007 D 34 002
008 c 33 001
009 J 40 008
010 D 34 008

LOC is not in the table, but gives the relative location of
each word of the table. The NAME field contains the in
ternal representation of the data name and the UP field
gives the LOC address of the immediate parent in the data
structure.

Notice that level numbers do not enter the table; they
are used only to provide structural information. Spe
cifically, if two adjacent item descriptions in the Data
Division have equal level numbers, they have the same
parent, namely the most recent item with a lower level
number; if the second item description has a higher level
number it is a descendant of the first; if the second item
description has a lower level number then there is a pre
ceding item description with the same level number as the
second, such that all intervening level numbers are higher;
these two have the same parent. The uP entry is
constructed from the level number with the aid of a push
down list. The details of this construction will be given
later.

Volume 6 I Number 7 I July, 1963

The Data Structure Interpreter will accept sequences
of name representations as the representations of quali
fied names, for example, (33, 41, 31, 0) for "C INK IN A".
This will be called a qualification sequence. It is assumed
that no name has 0 as an internal representation.

Given the correct entrance point into the table (LOC =
005), it is a simple matter to establish that (33, 41, 31, 0)
is in the table; just start at the entrance point and match
the names in the qualification sequence against the names
in the NAME column, using the UP column to specify
the next word to check. Thus, 33 matches against word
005, 41 matches against word 004, 31 does not match
against 002 but it does against 001. The matching process
is successful unless a table word with the UP entry =
000 is encountered before the qualification sequence is
exhausted. The process is equivalent to crawling up the
data structure tree matching elements of the qualification
sequence with names at nodes of the tree.

Entrance can be made into the table by a list of pointers.
This list contains in location k the address of the first
word of the tree table containing an occurrence of the name
representation whose value is k.

Loc Pointer

31 001
32 002
33 005
34 007

40 003
41 004

Hence, entrance into the tree table is gained by looking at
word k of the pointer table, where k is the first element of
the qualification sequence.

Now it remains only to take care of multiple occurrences
of names. Consider "J IN C": (40, 33, 0). This would be
found by jumping up the tree table from 009 to 008, except
that there is no entrance to word 009. This entry is accom
plished by linking up all equal names with a NEXT
column in the tree table corresponding to the dashed lines
of Figure 11. The final form of the Tree Table follows.

Loc Name Up Next Link

001 31 000 000
002 32 001 000
003 40 002 006
004 41 002 000
005 33 004 008
006 40 004 009
007 34 002 010
008 33 001 000
009 40 008 000
010 34 008 000

The LINK column points to the entry in the Data Defini
tion Table corresponding to the data item represented by
each word in the Tree Table; this is the index which is pro
vided by the Data Property Recorder along path G and
which is the unique internal representation of declared

Communications of the ACM 403

object-program data items. It should now be clear that
path D carries ordered pairs (level number, name) for
constructing the Tree Table entries. Path D could be
eliminated by sending the ordered pairs through the Data
Property Recorder.

Figure 12 describes the program used by the Data Struc
ture Recorder for building the Tree Table from these
ordered pairs. If ·the level FD is given the value 01 then
one must be added to all level numbers before they enter
this program. Figure 13 shows the program used by the
Data Structure Interpreter for matching qualification se
quences. Notice that existence and uniqueness checks are
made.

A useful characteristic of the Tree Table method for
representing data structures is the ease with which the
immediate descendants of an item can be found in
the table. Thus, the CORRESPONDING modifier is
easily accomodated.

In most realizations of the design presented here the
Data Definition Table will be the largest of all. In source
machines with small memories the Data Property Inter
preter, which is a trivial program, can be made a separate
memory load, sharing storage only with the Data Defini
tion Table. Happily, this table can be written directly on

FIG. 12. The Tree and Pointer table builder. Input is (LEVEL,
DATA). LOC gives location of new Tree Table word. The counters
i, LEVPARENT (1) and the arrays POINTER, NEXT, and UP
are initialized to zero. The error violates rule at bottom of
page VI-19 of COBOL manual.

404 Communications of the ACM

tape by the Data Property Recorder; no access to it is re
quired except by the Data Property Interpreter.

As different as the syntactic structures of ALGOL and
CoBOL may appear to be, essentially the same compiler
may be used for both source languages. Qualification in
CoBoL has its analogy in ALGoL as follows: if every block
is given an internally-generated name then the identifiers
local to that block are qualified by the block name. The
Tree Table thus provides a method for distinguishing
multiple uses of the same identifier.

Code Generation

Because the Polish intermediate language is simply a
minimal representation of the information in the source
language, the form of the intermediate language is more
naturally related to the source language than to the object
language. This naturalness is evident in the simplicity of
attaching actions to transition diagram paths once the
embodiment of the source language definition in transi
tion diagrams has been decided.

Whether a similar naturalness exists for the translation
from intermediate language to object code is heavily de
pendent on the nature of the object machine. A measure of
such naturalness might be given as follows. If the sequence
of operators (as distinguished from operands) in the inter-

FIG. 13. Qualification sequence analyzer. Sequence is in QSEQ
(1: ...). LOC of found Tree Table word is in FIND.

Volume 6 I Number 7 I July, 1963

mediate string strongly determines the sequence of opera
tors (as distinguished from addresses or names) in the ob
ject string, that is, if the form of the object code is pretty
well independent of the content of the Data Definition
Table, then the generation is natural. Unnatural genera
tion is characterized by large amounts of testing of infor
mation in the Data Definition Table before the form of the
response to an operator in the intermediate code can be
determined. Depending on the source language, this meas
ure of naturalness is one component of the characterization
of an object computer as being "commercial" or "scien
tific."

For example, the translation of an ALGOL intermediate
language like that of Grau [5] to Burroughs B5000 code is
natural to the point of being trivial by comparison with
other machines. The translation of CoBOL intermediate
language to the code of a word-oriented machine like the
Burroughs 220 is painfully unnatural; the response to the
MOVE-operator in the Case prototype compiler occupied
27 pages of flowchart.

The extension to code generation of techniques like those
discussed above in connection with syntactical analysis
and Polish generation has been considered [7] for natural
generation processes. The construction of ge:neral methods
for code generation which are as neat as those which exist
for source-to-intermediate translation is an important un
solved problem.

The experience of this author in construction of CoBOL
generators is limited to the 220. The following observations
may apply to other word-oriented computers. Much
trouble in generating addresses, shift counts and partial
field specifications can be saved if care is taken in choosing
the representation of fields in the Data Definition Table.
The 220 hardware representation of the ten nonsign digits
within a word, counting from the left, is 1' 2, 3, ... ' 8, 9, 0.
This was rejected in favor of the 7070representation: 0,
1, 2, · · ·, 7, 8, 9. Using the latter representation all digits
of a 10,000-word memory are addressed monotonely by
a five-digit number. A field A is represented by three num
bers: NA is the four-digit memory address of the word con
taining the leftmost digit of A; LA is a single digit giving
the position of the leftmost digit of A within N A; RA is the
digit address (in the sense of the five-digit number, above)
of the rightmost digit of A, relative to digit 0 of NA. Thus,
RA - LA + 1 is the length of the field, the integer part of
(RA + 10) + 1 is the number of words containing A, and
RA (mod 10) is the position of the rightmost digit of A. The
moral of this story is that the Generator should be able
to do additive arithmetic in a radix equal to the number of
bytes per word for each byte size of the object machine,
so that no division need be performed. Once this represen
tation was chosen, the unnatural220 generators reduced to
sequences of arithmetic tests on the Data Definition Table
entries interspersed with some minor arithmetic opera
tions on these entries. Because of the space problem and
the reassurance given by the Seventy-five Percent Rule, a
natural choice of language in which to express the genera-

Volume 6 I Number 7 I July, 1963

tors was a simple three-address interpretive code. Such a
choice leaves something to be desired in the way of ele
gance.

Finally, we discuss the assignment of addresses to branch
instructions. No one-pass compiler can generate complete
code, since in response to a GO TO statement which jumps
forward the compiler cannot possibly know on the first
pass what address to put into the branch instruction. Since,
with the subset of CoBoL being considered here, forward
branching is the only reason for a second compiler pass, it
is usually economical to perform the remaining operations
at load time by fixing up the branch addresses in the object
memory.

To be more specific, assume that three statements, GO
TO INDECISION, occur in the source program before the
procedure name INDECISION occurs as a paragraph
name. Furthermore, assume that the three GO TO's gen
erate unconditional branches (BUNs) at locations 0528,
0742 and 0856; also the name INDECISION is finally de
fined to have the value 1234. Clearly, the desired coding is

0528: BUN 1234

0742: BUN 1234

0856: BUN 1234.

This is what actually gets generated:

0528: BUN 0000

0742: BUN 0528

0856: BUN 0742

xxxx: FIXUP(0856, 1234).

The FIXUP(0856, 1234) is not loaded into memory but
is an instruction to the loader to fix up the address of the
word in location 0856 to be "1234". Before making the
change, the loader checks for zero in the address; if the
address is zero loading is resumed after the fixup
terminates; otherwise the nonzero address specifies the
next location to be fixed up.

In the compiler this technique requires storage for an
address plus a bit for each unique procedure name. The
bit records whether the value of the procedure name has
been defined yet by the occurrence of the name in a para
graph or section heading. The address storage cell, ini
tialized to zero, holds the value of the name (if it has been
defined) or the location of the most recent forward branch
to that name; this cell provides the address of every
branch instruction generated.

The object location of each instruction generated is de
termined by a location counter, LC, which records the lo
cation of the instruction currently being generated and is
incremented immediately after the generation of each in
struction.

As Figure 14 shows, the Polish operators controlling
sequencing in conditional sentences are . written at the
places given below in parentheses.

Communications of the ACM 405

IF condition (TW) statement ELSE (FW) statement (EST)
IF condition (TW) statement (FW) (EST). (ESN)

Notice that the second form never appears without ending
in a period. The operator names TW, TN, FW, FN, EST,
and ESN are mnemonics for True is now, True is next,
False is now, False is next, End statement, and End sen
tence, respectively. Where instead of statement the phrase
NEXT SENTENCE occurs, the operators TW and FW
are replaced by TN and FN.

The three basic control paths within a conditional state
ment are shown as dotted arrows below. They are given the
names TRUE, FALSE, and AROUND.

FALSE r---------------------,
I TRUE I

IF condition ----~ (TW) statement-- ELSE (FW) L_-+ statement r-~ (EST)
I I

;-~~~N~-----------!
A fourth path, called NEXT, handles NEXT SENTENCE
and will be treated later. When conditional statements are
nested, the TRUE, FALSE, and AROUND paths exhibit
nested last-in-first-out (LIFO) behavior. As might be ex
pected, then, three LIFO stacks called TRUE, FALSE'

statement:

imperative
statement

IF

FIG. 14. Production of sequence-controlling operators. Square
boxes contain names of symbols written by actions.

406 Communications of the ACM

and AROUND are used by the Generator to create these
paths. The following table defines the beginning and end
of each path.

Path Beginning End

TRUE test operator TW or TN
AROUND FW or FN EST
FALSE test operator FW or FN

The test operator in the Polish is the last thing resulting
from a test in a condition and generates code for a forked
conditional branch with two branch addresses, a TRUE and
a FALSE address.

Before specifying the generator actions in response to
the several sequential operators let us define a few terms.
There are the three stacks, the location counter LC, and
two cells TEMP and NEXT. The top element of the
TRUE (FALSE, AROUND) stack stores the location of
the most recent true (false, around) branch instruction.
(The AROUND stack serves double duty and also stores
the locations of beginnings of test coding for use in pro
cessing of AND and OR operators.) The NEXT cell con
tains the location of the most recently generated branch
to the beginning of the next sentence.

Several standard procedures occur in the Generator.
GENERATE(x) writes the coding or fixup x. (FIXUP(L,
A) is as above, and when read by the loader causes location
L to have "A" put into its address, and so on.) ON(A, S)
puts the contents of A onto the LIFO stack S. OFF(S)
has as its value the top of the stackS, which is removed in
the process. For example, ON(OFF(S), T) transfers the
top element fromS toT.

Table 3 defines the Generator responses to the sequential

TABLE 3. GENERATOR RESPONSES TO SEQUENTIAL AND BooLEAN
OPERATORS

Operator

TW

TN

FW

FN

EST
ESN
NOT

OR

AND

Response

OFF(AROUND);
GENERATE(FIXUP(OFF(TRUE), LC))

OFF(AROUND); TEMP <-OFF(TRUE);
GENERATE(FIXUP(TEMP, NEXT));
NEXT<- TEMP

ON(LC, AROUND); GENERATE(BUN 0);
GENERATE(FIXUP(OFF(FALSE), LC))

ON(LC, AROUND); GENERATE(BUN 0);
TEMP <- OFF (FALSE);
GENERATE(FIXUP(TEMP, NEXT));
NEXT<- TEMP

GENERATE(FIXUP(OFF(AROUND), LC))
GENERATE(FIXUP(NEXT, LC)); NEXT<- 0
TEMP<- OFF(FALSE);

ON(OFF(TRUE), FALSE); ON(TEMP, TRUE)
OFF(AROUND); TEMP <- OFF(TRUE);

GENERATE(FIXUP(TEMP, OFF(TRUE)));
ON(TEMP, TRUE); TEMP <- OFF(FALSE);
GENERATE(FIXUP(OFF(FALSE),
OFF(AROUND))); ON(TEMP, FALSE);
ON(LC, AROUND)

OFF(AROUND); TEMP <- OFF(FALSE);
GENERATE(FIXUP(TEMP, OFF(FALSE)));
ON(TEMP, FALSE); TEMP<- OFF(TRUE);
GENERATE(FIXUP(OFF(TRUE),
OFF(AROUND))); ON(TEMP, TRUE);
ON(LC, AROUND)

Volume 6 I Number 7 I July, 1963

•

and Boolean operators. Note that AND, OR, and NOT
generate no coding.

Depending on the code structure of the object machine,
more than two branch addresses can be generated per test.
Let [TEMP] denote the contents of TEMP, and let z
be a variable whose values are the stack names TRUE and
FALSE. Each time a z-branch must be generated the
following occurs:

TEMP<- OFF(z); ON(LC, z);
GENERATE(BRANCH [TEMP]).

Before any code generation for a test, ON(O, z). At the
end of the code generation for each test, ON(LC,
AROUND).

This brief treatment of conditions may be clarified for
the studious reader by an example. For the sake of dis
cussion assume the following coding to be generated in re
sponse to the test operators LSS, EQL, and GTR:

A,B,LSS: LDA A, SUB B, BNA true address,
BUN false address;

A,B,EQL: LDA A, SUB B, BZA true address,
BUN false address;

A,B,GTR: LDA B, SUB A, BNA true address,
BUN false address.

The COBOL sentence to be considered is the following:
IF X > Y IF A = B OR X = Y MOVE C TO D

ELSE NEXT SENTENCE
ELSE IF C < D NEXT SENTENCE ELSE

MOVEETOF.
The Diagrammer produces the following Polish:

X, Y, GTR, TW, A, B, EQL, X, Y, EQL, OR,
TW, C, D, MOVE, FN, EST,

FW, C, D, LSS, TN, FW, E, F, MOVE,
EST,EST,ESN.

T,he Generator's response is given in Table 5. After loading,
the code appears in memory as shown in Table 4.

Except for the handling of the "="operator, which re
quires one bit of storage at object time, the techniques
given here have direct applicability to the translation of
ALGOL; in fact, they are equivalent to those given by
Huskey and Wattenburg [8], with some modification for
reducing storage requirements in the Generator when
generation is unnatural. See also Arden; Galler, and
Graham [9] for optimization techniques which might be
useful for some object computers when Generator space
is available.

On Producing Compilers

In the past few years there has been an expenditure of
energy toward both writing and speaking about compilers
which will generate copies of themselves. When a claim
of superiority for such compilers is made it usually says
that a compiler which can reproduce itself greatly simpli
fies the conversion to a new source or object language.
Usually the arguments given in support of this claim take
little or no account of the set of available methods which
the proposed technique would supplant.

No compiler-writing technique will eliminate the re-

Volume 6 I Number 7 I July, 1963

quirement to analyze the task which the compiler to be
created must perform, although it can provide a convenient
language with which to carry out the analysis. The chief
purpose of a compiler-writing technique is to reduce the
labor which follows analysis and which is necessary for the
production of the actual compiler. There are other ways to
create a cheap compiler than simply to use a compiler as
a programming aid. This article attempts to suggest one
such way.

If a fast compiler is desired more can be said. The front
end of any fast, one pass compiler will be written with an
assembler; that's a corollary of the Seventy-five Percent
Rule and some common sense about efficiency of com
piler-generated code. Furthermore, the really fast com
pilers will have only one pass; that's the result of
an analysis of how much extra work must be done by a
multi-pass compiler. Notice that a corollary of these two
statements is that really fast compilers can be written only
for source languages which permit one-pass compilation.
This proposition ought to be taken into account by lan
guage designers.

Our experience in the development of the prototype
suggests that one analyst-programmer, with one or two
understanding individuals around to talk to occasionally,
can produce a CoBOL compiler (sans library and object
program I-0 control system) in a year or less, if he is pro
vided with an assembler which permits incorporating all
the special formats he will need into the assembly lan
guage.

Acknowledgments. Joseph Speroni of the Case Com
puting Center worked closely with the author during the
six months of the project described here. His contribu
tions were indispensable to the creation of the prototype
program and a significant part of the design. Before the
specific CoBOL effort was begun, the author worked with

TABLE 4. APPEARANCE OF GENERATOR OUTPUT AFTER LOADING

1000 LDA Y
1001 SUB X
1002 BNA 1004
1003 BUN 1016
1004 LDA A
1005 SUB B
1006 BZA 1012
1007 BUN 1008
1008 LDA X
1009 SUB Y
1010 BZA 1012
1011 BUN 1023
1012 LDA C
1013 STA D
1014 BUN 1015
1015 BUN 1023
1016 LDA C
1017 SUB D
1018 BN A 1023
1019 BUN 1021
1020 BUN 1023
1021 LDA E
1022 STA F
1023 next sentence

Communications of the ACM 407

Gilbert Steil, now of Mitre Corporation, in an investigation
of the application of transition diagrams to the recogni
tion of ALGOL; this .work led to the No-Backup Condition
and the desirability for the sake of efficiency of separating
lexical and syntactical analysis. Both Mr. Speroni and Mr.
Steil assisted in the proofreading of this article.

3. Williams, F. A. Handling identifiers as internal symbols in
language processors. Comm. ACM 2 (June 1959), 21.

4. Cantor, D. G. On the ambiguity problem of Backus systems.
J. ACM 9 (1962), 477.

5. Grau, A. A. A translator-oriented symbolic language pro
gramming language. J. ACM 9 (1962), 480.

6. Conway, M. E. and Speroni, J. Arithmetizing declarations:
an application to COBOL, Comm. ACM 6 (Jan. 1963), 24.

7. Warshall, S. A syntax directed generator. Proc. EJCC, 1961,
295.

REFERENCES
1. Irons, E. T. A syntax directed compiler for ALGOL 60.

Comm. ACM 4 (Jan. 1961), 51.
2. COBOL-1961-Revised specifications for a common business

oriented language. U. S. Government Printing Office, Wash
ington, D. G., 1961, 0-598941. Certain terminology and defini
tions are taken from this document without reference to any
subsequent amendments thereto.

8. Huskey, H. D. and Wattenburg, W. H. Compiling techniques
for Boolean expressions and conditional statements in
ALGOL 60. Comm. ACM 4 (Jan. 1961), 70.

9. Arden, B. W., Galler, B. A., and Graham, R. M. An algorithm
for translating Boolean expressions. J. ACM 9 (1962), 222.

408

TABLE 5.

Polish Output

Initial state
X
y

GTR

TW
A
B
EQL

X
y
EQL

OR

TW
c
D
MOVE

FN

EST
FW

c
D
LSS

TN
FW

E
F
MOVE

EST
EST
ESN

1000: LDA Y
1001: SUB X
1002: BNA 0
1003: BUN 0
FIXUP(1002, 1004)

1004:
1005:
1006:
1007:

LDAA
SUBB
BZAO
BUNO

1008: LDA X
1009: SUB Y
1010: BZA 0
1011: BUN 0

FIXUP(1010, 1006)
FIXUP(1007, 1008)
FIXUP(1010, 1012)

1012: LDA C
1013: STA D
1014: BUN 0
FIXUP(1011, 0)
FIXUP(1014, 1015)
1015: BUN 0
FIXUP(1003, 1016)

1016: LDA C
1017: SUB D
1018: BNA 0
1019: BUN 0
FIXUP(1018, 1011)
1020: BUN 0
FIXUP(1019, 1021)

1021: LDA E
1022: STA F
FIXUP(1020, 1023)
FIXUP(1015, 1023)
FIXUP(1018, 1023)

Conununications of the ACM

GENERATOR RESPONSES TO INPUT IN EXAMPLE

Internal states after response

LC = 1000, NEXT = 0

LC = 1001, FALSE= 0, TRUE= 0
LC = 1002, TEMP = 0, TRUE = 1002
LC = 1003, TEMP= 0, FALSE= 1003
LC = 1004, AROUND = 1004
AROUND empty, TRUE empty

LC = 1005, FALSE = 100310, TRUE = 0
LC = 1006, TEMP = 0, TRUE = 1006
LC = 1007, TEMP = 0, FALSE = 100311007
LC = 1008, AROUND = 1008

LC = 1009, FALSE= 10031100710, TRUE= 100610
LC = 1010, TEMP = 0, TRUE = 100611010
LC = 1011, TEMP= 0, FALSE= 10031100711011
LC = 1012, AROUND = 100811012
AROUND = 1008, TEMP = 1010, TRUE = 1006
TRUE = 1010, TEMP = 1011, FALSE = 100311007
FALSE = 100311011, AROUND = 1012
AROUND empty, TRUE empty

LC = 1013
LC = 1014
AROUND = 1014, LC = 1015, TEMP = 1011, FALSE = 1003
NEXT= 1011
AROUND empty
AROUND = 1015, LC = 1016
FALSE empty

FALSE= 0, TRUE= 0, LC = 1017
LC = 1018, TEMP = 0, TRUE = 1018
LC = 1019, TEMP= 0, FALSE= 1019
LC = 1020, AROUND = 101511020
AROUND = 1015, TEMP= 1018, TRUE empty, NEXT= 1018
AROUND = 101511020, LC = 1021
FALSE empty

LC = 1022
LC = 1023
AROUND = 1015
AROUND empty
NEXT= 0

Volun1e 6 I Nun1ber 7 I July, 1963

