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A COBOL compiler design is presented which is compact 

enough to permit rapid, one-pass compilation of a large sub

set of COBOL on a moderately large computer. Versions of 

the same compiler for smaller machines require only two work

ing tapes plus a compiler tape. The methods given are largely 

applicable to the construction of ALGOL compilers. 

Introduction 

This paper is written in rebuttal of three propositions 
widely held among compiler writers, to wit: (1) syntax
directed compilers [1] suffer practical disadvantages over 
other types of compilers, chiefly in speed; (2) compilers 
should be written with compilers; (3) CoBoL [2] compilers 
must be complicated. The form of the rebuttal is to de
scribe a high-speed, one-pass, syntax-directed CoBOL com
piler which can be built by two people with an assembler 
in less than a year. 

The compiler design presented here has the following 
properties. 

1. It processes full elective CoBOL except for automatic 
segmentation and its byproducts, such as those properties 
of the ALTER verb which are affected by segmentation. 
The Verbs DEFINE, ENTER, USE and INCLUDE are accessible 
to the design but were not included in the prototype coded 
at the Case Computing Center. 

2. It can be implemented as a true one-pass compiler 
(with load-time fixup of forward references to procedure 
names) on a machine with 10,000 to 16,000 words of high
speed storage. In this configuration it processes a source 
deck as fast as current one-pass algebraic compilers. 

3. It can be segmented into many possible configura
tions, depending on the source computer's storage size, 
such that (a) once a segment leaves high-speed storage it 
will not be recalled; (b) only two working tapes are re
quired, and no tape sorting is needed. One such configura
tion requires five segments for a machine with 8000 six
bit characters of core storage. 

Of course any compiler can be made one-pass if the high
speed storage of the source computer is plentiful enough; 
therefore, what this exposition has to offer is a collection 
of space-saving techniques whose benefits are real enough 

* The work described here was performed at Case Institute of 
Technology in 1961 and was supported in part by Univac Di
vision of Sperry Rand Corporation. 

396 Communications of the ACM 

to make this design (in which all tables are accessed while 
stored in memory) practical on contemporary computers. 
None of these techniques is limited in application to CoBOL 
compilers. The following specific techniques are discussed: 
the coroutine method of separating programs, transition 
diagrams in syntactical analysis, data name qualification 
analysis, and instruction generation for conditional state
ments. 

The algorithms described were verified on the 5000-word 
Burroughs 220 at the Case Institute of Technology Com
puting Center. A two-pass configuration was planned for 
that machine, and first-pass code was checked out through 
the syntactical analysis. At the time the project was dis
continued a complete CoBOL syntax checker was operating 
at 140 fully-punched source cards per minute. (The Case 
220 had a typical single-address instruction time of 100 
microseconds.) Remarks presented later suggest that a 
complete one-pass version of the compiler, which would 
be feasible on a 10,000-word machine, would run at well 
over 100 source cards per minute. 

Coroutines and Separable Programs 

That property of the design which makes it amenable to 
many segment configurations is its separability. A program 
organization is separable if it is broken up into processing 
modules which communicate with each other according to 
the following restrictions: (I) the only communication 
between modules is in the form of discrete items of in
formation; (2) the flow of each of these items is along 
fixed, one-way paths; (3) the entire program can be laid 
out so that the input is at the left extreme, the output is at 
the right extreme, and e\'erywhere in between all informa
tion items flowing between modules have a component of 
motion to the right. 

Under these conditions each module may be made into 
a coroutine; that is, it may be coded as an autonomous pro
gram which communicates with adjacent modules as if 
they were input or output subroutines. Thus, coroutines 
are subroutines all at the same level, each acting as if it 
were the master program when in fact there is no master 
program.1 There is no bound placed by this definition on 
the number of inputs and outputs a coroutine may have. 

The coroutine notion can greatly simplify the concep
tion of a program when its modules do not communicate 
with each other synchronously. Consider, as an example, a 
program which reads cards and writes the string of char
acters it finds, column 1 of card 1 to column 80 of card 1, 
then column 1 of card 2, and so on, with the following 
wrinkle: every time there are adjacent asterisks they will 
be paired off from the left and each "**" will be replaced 
by the single character " j ". This operation is done with 
the exponentiation operator of FoRTRAN and CoBOL. The 
flowchart of such a program, viewed as a subroutine pro-

1 To the best of the author's knowledge the coroutine idea was 
concurrently developed by him and Joel Erdwinn, now of Com
puter Sciences Corporation. 
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viding characters to a main routine which calls it, is shown 
. lllF· 1 m.:. 1 1gure . 

Notice that the simple requirement of compressing 
asterisks reqmres the introduction of a switch which 

FIG. 1. Asterisk squasher subroutine with environment. 
SWITCH is initialized OFF; i is initialized to 81; OUT is output 
area of SQUASHER. 

FIG. 2. Asterisk squasher as coroutine. First entrance is to 1. 
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bifurcates the subroutine and selects the part to be used 
at each call depending on the situation at the last call. The 
reason for the switch is that each call of the subroutine must 
result in output of exactly one character. A programmer well 
versed at inventing counterexamples could dream up a 
requirement for a subroutine which would necessitate an 
absurd arrangement of switches in order to preserve the 
one-output-for-each-call relationship required of the sub
routine. 

The coroutine approach to the same problem accom
plishes the switching job implicitly by use of the subrou
tine calling sequence. When coroutines A and B are con
nected so that A sends items to B, B runs for a while 
until it encounters a read command, which means it needs 
something from A. Then control is transferred to A until 
it wants to "write," whereupon control is returned to B 
at the point where it left off. Figure 2 shows the asterisk 
squasher when both it and the using program are corou
tines. 

Figure 3 illustrates the essence of separability. Instead 
of having modules A and B communicating as coroutines 
with a coroutine linkage between write statements in A 
and read statements in B such that control is passed back 
and forth once each time an item is transferred, it is possi
ble without changing anything in A or B except the read and 
write linkages to have A write all its items on a tape, to 
rewind the tape and then to have B read all the items from 
the tape. In this sense, then, the pair of programs A and B 
can operate as a one-pass or a two-pass processor with 
only trivial modification. 

As background, the coroutine linkage on the Burroughs 
220 is described here. The 220 is a sequential, single-address 
machine with the sequence counter called the P-register; 
during the execution of an instruction it contains the loca
tion of the next instruction to be fetched. Unless the cur
rent instruction causes the machine to branch, the P
register will contain one plus the location of the current 
instruction. The UNCO~DITIONAL BRANCH instruc
tion BUN A works by placing its address A into 
the P-register. The STORE P instruction STP B 
places the contents of P plus one into the address part of 
the contents of location B. The standard subroutine call is 

B. 

A. 

STP EXIT 
BUN ENTRAXCE 

~ 
~ I 

I 
I 

r-------------------1 
I I 
I I 

L-------------------~ 

FIG. 3. Illustration of a property of separable programs. 
A. A and B, linked as coroutines, communicate directly. 
B. A writes its entire output before B reads anything. 
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where EXIT contains a BUN instruction whose address 
will be altered by the STP instruction in the call. A pair of 
subroutines becomes a pair of coroutines by adding to each 
an isolated BUN instruction which we can call its router, 
and by changing the addresses of the STP, BUN calls as 
follows: when coroutine A calls coroutine B the call is 

STP AROUTER 
BUN BROUTER. 

Thus, the router is actually a generalization of the switch 
of Figure 1. Getting a system of coroutines started is a 
matter of properly initializing the routers. 

Figure 3 shows that the coroutines of a separable pro
gram may be executed alternately or serially. When true 
parallel processors are available the fact that the coroutines 
of a separable program may be executed simultaneously be
comes even more significant. 

COBOL Compiler Organization 

Figure 4 presents the coroutine structure of the CoBoL 
compiler designed at Case. The program is separable under 
the condition that the two pairs of modules which share 
tables are considered to be a single coroutine. 

The reader is asked to understand that the present 
treatment is concerned more with exposition than com
pleteness. A more thorough treatment would not ignore 
COPY, pictures, and literals, for example. Let it suffice 
to say that these features can be accommodated without 
any significant design changes over what is presented here. 

In Figure 4 solid arrows are communication paths be
tween coroutines; dashed arrows show access to tables. 
When the dashed arrow points to a table the latter is being 
built; when the dashed arrow points away the table is 
supplying values to the using coroutine. The specific opera
tions performed by the coroutines will be discussed in the 
following four sections. 

Lexical Analysis 

The input, on line B of Figure 4, to the Diagrammer con
sists of (one-word) items denoting either names or CoBOL 
basic symbols. The class of basic symbols, over 300 ele
ments in size, consists of all characters of the source alpha
bet (other than numerics, alphabetics, hyphen in names, 
and space) together with all the CoBoL reserved words and 

the paragraph symbol ~. (This internal special symbol is 
inserted by the card scanner whenever card column 8 is 
not blank. Such a device converts many format recogni
tion problems to syntax analysis problems.) The lexical 
analysis process embodied in the Basic Symbol Reducer 
and the Name Reducer converts the source program into 
a sequence of integer-coded one-word items in one-to-one 
correspondence (with the exception of ~) with the words 
and special characters of the source program. 

The Basic Symbol Reducer analyzes the input string 
by what is essentially a character-pair analysis, but the 

TABLE 1 
Class Character 

0 012 ... 789 
1 ABC··· XYZ 
2 
3 b (space) 
4 * I 
5 
6 
7 II 

8 "if ( 
9 ) 
X + 

TABLE 2 
Right Character R 

0-9 
A-Z 

lil b 
~ =*! 
il 

..d 
Q 

1) 
~ If( 

) 9 

+ X 

Functions: 
1. S +--- SL 

0-9 

0 

2. S +--- empty 

A-Z b =*! 
2 3 4 

1 3 
1 3 
1 6 
2 5 

3. Function 1, then write S 

II 

5 6 7 

3 1 
3 1 

2 4 

5 5 

6 6 

4. Enter non-numeric literal scanner 
5. Do nothing 
6. Write L, then function 2 

If( 

8 

5 

7. If LR = "**"then R +--- "i" else error 
Blank: error 
S is a string accumulator 

+ 
9 X 

OloJECT 
PROGRAM 

Fw. 4. COBOL Compiler Organization 
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character pair matrix (for the IBM "H" set) need not be 
49 X 49 but only 11 X 11 since there are only eleven 
operationally different types of characters. These types are 
listed in Table 1, the Character Class Table. Furthermore, 
only three bits are required for each entry of the Char
acter Pair Matrix, which occupies eleven words on the 220. 
Table 2 shows the matrix with the set of actions taken for 
each character pair. 

The Reserved Word List and Name Table were built 
for the 220 according to a method of F. A. Williams [3]. 
When the source machine has an adequate memory both 
tables can be combined into one, initialized to the set of 
reserved words. On line A of Figure 4 all the reduction has 
taken place except that names are in a fixed 30-character
plus-identification format. 

In light of the organization of the compiler into lexical 
analysis, syntactic analysis and synthesis (including data 
storage allocation in the Data Division and code genera
tion in the Procedure Division), with the three in series 
there is a clear-cut strategy for getting both high com
piling speed and low space consumption from the one-pass 
version of the design: make the lexical analysis as fast as 
possible even at the expense of some space, and make the 
rest as compact as possible even at the expense of speed. 
This is explained by the simple fact that most of the time 
is spent in lexical analysis. In our experience with the pro
totype we found that the input speed difference between 
lexical analysis alone and lexical plus syntactical analysis 

liS [NOT] GREATER THAN) 
IS [NOT] LESS THAN 

condition: IF formula IS [NOT] EQUAL TO formula 
EQUALS 
EXCEEDS 

FIG. 5. CoBOL-like definition of condition 

condition: 

EXCEEDS 

GREATER 

FIG. 6. Transition diagram definition of condition 
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was about ten percent. It appears that nothing short of 
pure sabotage can be done to the syntactical analysis and 
synthesis portions to slow the whole compiler down to less 
than 75 percent of the speed of the lexical analysis routine 
alone; hence our name "Seventy-five Percent Rule" for 
this strategy. 

Syntactical Analysis 

An abbreviated definition of condition is given for this 
exposition in Figure 5. Keep in mind that the syntactical 
analyzer (Diagrammer) sees single symbols entering it for 
things we call IF, IS, NOT, data-name, and so on. Call these 
symbols which are input to the diagrammer input symbols. 
Observe, then, that any sequence of input symbols prop
erly called a condition must correspond to one of five paths 
through the condition definition, starting at the left IF and 
ending at the right formula, each path corresponding to a 
particular choice of relation. If the Diagrammer is thought 
of as having a window which displays each input symbol as 
it comes from the lexical analyzer, the definition of a syn
tactic type like condition is a rule for predicting, for each 
input symbol in the window, what the legal set of suc
cessors of that symbol is. A transition diagram is a formali
zation of this notion of what a definition is. Figure 6 shows 
the diagram equivalent to the definition of Figure 5. 

A transition diagram is a network of nodes and directed 
paths with two distinguished types of nodes: an entrance 
node (usually drawn at the top) has at least one path lead
ing from it, and an exit node (labeled "X") has at least 
one path leading to it and no paths leading from it. Every 
transition diagram defines a syntactic type which is not an 
input symbol, and every such syntactic type has one transi
tion diagram which defines it. A transition diagram has 
exactly one entrance node and at least one exit node. 

Each path is said to be blank (as, for example, one path 
leading from node 3 to 4 in Figure 6) or to have a symbol 
on it. The symbol is either an input symbol, or else it is a 
syntactic type defined by a transition diagram. (We use 
capitalized words on the paths for reserved words and 
lowercase words for names and syntactic types.) No two 
paths leading from a node may be blank or may have the 
same symbol on them. No transition diagram may have a 
sequence of blank paths leading from the entrance to an 
exit node. The set of blank paths may contain no loop. 

There will be one transition diagram labeled (that is, 
defining) COBOL program. The Diagrammer starts at its 
entrance node. The object is to get to an exit node; to have 
done so implies that a CoBOL program has traveled past 
the window of the Diagrammer. Similarly, getting from the 
entrance to an exit of any transition diagram means that 
the corresponding syntactic type has been traversed. 

The rules of the Diagrammer for leaving a node are as 
follows. 

STEP 1. Examine all paths leaving the node which have input 
symbols on them. If there is a match with the symbol in the 
window, read the next input symbol into the window and tra
verse the path. Now go to Step 5. 
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STEP 2. If there was no match in Step 1, try each remaining 
nonblank path leaving the .node. Each path will correspond 
to some transition diagram. The path may be traversed if and 
only if it is possible to get from the entrance to an exit of that 
diagram. This is attempted by pushing down in a last-in-first
out stack called the linkage stack the current node number and 
then going to Step 1 for the entrance node of the particular 
transition diagram being tried. 

STEP 3. If there was no match in Step 2 and there is a blank 
path leading from the node, follow it and go to Step 5. 

STEP 4. If Step 3 was unsatisfied the Diagrammer is at a dead end. 
If the linkage stack is nonempty this condition is a failure to 
traverse, in Step 2, a particular path corresponding to the 
t_ransition diagram in which the dead end occurs. Pop up the 
linkage stack, reposition the window to the symbol present 
when the diagram was entered, and try another path in Step 2. 
If the linkage stack is empty a syntactical error exists in the 
input string. 

STEP 5. There are two cases. 
a. The path just traversed does not end at an exit node. Go to 

Step 1 for this new node. 
b. Otherwise, pop up the linkage stack, return to the node 

whose number was at the top of the stack, and traverse the 
path corresponding to the diagram just exited. Now go back 
to Step 5. 

The above procedure constitutes the entirety of that 
part of the Diagrarruner which checks syntax. 

Recall the condition that no two paths leading from the 
same node may have the same symbol on them. The follow
ing question arises: What if two paths leading from the 
same node have syntactic types on them, and the two 
transition diagrams defining these types have paths lead
ing from the entrance nodes which have the same symbol 
on them? If this happens, then with certain pathological 
languages the interpretation of a given input string might 
depend on the order in which the paths leading from a 
node are tried. Indeed, the same problem can occur if this 
nonuniqueness exists at a deeper level than the first. Be
cause it is desirable not to have to worry about this prob
lem, let us consider it now in more detail. 

Two conditions on a system of transition diagrams are 
presented and their effects on regularizing languages are 
discussed. The first condition, called the "No-Loop Condi
tion," says that no transition diagram will make a refer
ence to itself (i.e. it will not have a path with the syntactic 
type which it defines) without having first read an input 
symbol after it was entered. For, if after entering a transi
tion diagram defining syntactic type t no input symbol has 
been read when an attempt is made to traverse a path with 
t on it, a periodic (infinite loop) condition exists. And only 
then does an infinite loop exist, since if the input string is 
finite a loop which reads-input symbols will terminate. 

The second condition, called the "No-Backup Condi
tion," defines away any need to specify an order in which 
the nonblank paths leading from a node should be tried. 
Every path has associated with it a set of input symbols, 
called its set of initial input symbols, defined as follows. 
When the path has a syntactic type on it an input symbol 
is an initial input symbol if and only if when it is in the 
input window and the transition diagram defining the syn-
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t~ctic type on the p~th in question is entered, that symbol 
will be read before mther a dead end occurs or the diagram 
is exited. The class of initial input symbols of a blank path 
is empty, and the class of initial input symbols of a path 
with an input symbol on it is the one-element class con
taining that symbol. The No-Backup Condition says that 
the No-Loop Condition holds and that for every node in 
the system of transition diagrams the sets of initial input 
symbols of all the paths leading from that node are dis
joint. For, if the classes of initial input symbols for all the 
nonblank paths leading from a node are disjoint, then the 
classes of input strings which enable the respective paths 
to be traversed will be disjoint, and therefore the order in 
which these paths are tried will be irrelevant. The No
Backup Condition is clearly stronger than it has to be in 
order to obtain independence of order of testing, but this 
condition confers another property on a system of transi
tion diagrams which is to be sought: such a system of dia
grams will never require backing up the input string during 
scanning. All nonerror dead ends encountered within any 
transition diagram will be encountered before any input 
symbol is read; thus the response to a dead end in Step 4 
(when the linkage stack is nonempty) is simply to pop up 
the stack and try another path in Step 2, without reposi
tioning the window. In fact the tests of Steps 1 and 2 may 
be freely intermixed. 

The No-Backup Condition makes error indication more 
specific because an error dead end can be immediately dis
covered without first emptying the linkage stack by the 
fact that at least one symbol has been read since entering 
the transition diagram harboring the dead end. 

In a sense, the No-Backup Condition is a device for 
legislating out of existence the ambiguity problem [4] in 
languages defined by transition diagrams. The crucial 
point here is that the syntax of CoBOL-61 and AwoL-60 
may be defined by transition diagrams which satisfy the 
No-Backup Condition. A one-pass compiler for either of 
these languages which is constructed according to the 
Seventy-five Percent Rule and which uses No-Backup 
transition diagrams will be competetive in both compiling 
speed and memory space with a compiler of any other con
temporary design. 

The catch in all this is that a set of Ko-Backup diagrams 
for a given language is constructed by a process which is 
neither straightforward nor easy to describe. The CoBOL 
condition, for example, may begin with a left parenthesis 
which can surround an entire condition or just the left 
formula of a relational test. To expose the subtleties of the 
construction of No-Backup diagrams, we change the defi
nition of condition in Figure 5 to retain only the essentials. 
Further, we define formula. These are both done in Figure 
7. Examples of conditions are (A = B), A = B, ((A+ B) = 

C), (A + B) = C, and so on.2 An equivalent set of No
Loop transition diagrams are given in Figure 8. 

2 The presence of the IF, strictly speaking an error in the 
COBOL manual as well as Figure 5, has been eliminated in Figure 
7. 
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This is not a set of No-Backup definitions, however, be
cause encountering an initial left parenthesis gives no in
dication whether it surrounds the entire condition or just 
the left formula. Consider (A + B) = C. The sequence of 
transitions will be as follows. 

1---+2 read ( 
1 enter condition 
6 enter formula 
9 enter term 

12---+ X read A 
9 ---+ 10 primary traversed 

10---+X + is not* 
6--->7 term traversed 
7---+8 read+ 
9 enter term 

12---+ X read B 
9 ---+ 10 primary traversed 

10---+ X ) is not * 
8---+7 term traversed 

' 
7---+ X ) is not+ 
1---+4 formula traversed 

condition: { io~:nu~~ti~n f~rmula} 
formula: {~~~:ula +term I 
term: 

term * primary !primary 

data-name 
primary: 

(formula ) 

FIG. 7. Another definition of condition 

formula: 

term: 
9 

FIG. 8. No-Loop definitions equivalent to Fig. 7 
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At this point the Diagrammer reaches a dead end. The 
condition can only be scanned directly if the input is 
backed up and the first transition is made 1 ~ 4, not 1 ~ 2. 

The difficulty is that formula can also begin with "("; 
to scan without backup means that to go down a path with 
a "(" on it should not involve a committment that the 
string being scanned is a condition and not a formula, or 
vice versa. Thus a solution is to introduce a multiple-exit 
transition diagram so that all syntactic types beginning 
with the same input character are defined by that diagram; 
the different syntactic types result in different exits, la
beled XI or X2. Figure 9 defines condition this way. 

There is little else to the Diagrammer except the genera
tion of Polish. This is accomplished by little subroutines 
called actions which are activated when certain paths are 
traversed. Figure 10 gives the actions required to create 
trailing-operator Polish from formulas. Remember that an 
action on a path with a syntactic type is executed after the 
corresponding transition diagram is exited. The actions 
for translation of ALGOL into the intermediate language 
suggested by Grau [5] would be as simple as Figure 10 
suggests. 

In a computer representation each path is represented 
by an item occupying one word or less, if possible. All 

~:flats it: cp--< 
0 

formula 

EXIT 2• condition 

Fw. 9. No-Backup diagram to replace the condition diagram of 
Fig. 8. 
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paths from a given node are grouped together and a node 
number, instead of being an element of a sequential set of 
integers, is the address of the first path word of that node. 
A given path word contains a final node number, an action 
number, a bit to distinguish between input symbols and 
syntactic types, an input symbol or syntactic type num
ber (in the latter case, the number of the entrance node), 
and a bit to distinguish the last path from a node. (If this 
path is blank its word can be eliminated simply by be
ginning the node to which it would connect in its place.) 
Exit nodes are represented by special one-word items. 
Clearly, if the syntax is to be coded in the programming 
language using the advantages of symbolic addressing 
(and this is most desirable), then an unusual programming 
system is required for building a transition-diagram com
piler. Macros may be useable in this connection but would 
be cumbersome if they are processed slowly. The Case 
assembler was given a definable operation with specifiable 
operand fields to implement symbolic coding of the syntax. 

The No-Backup Condition removes ambiguity in the 
task of syntax recognition. There is no reassurance that the 
introduction of multiple-exit diagrams confers the same 
blessings on the translation task. What if, for example, the 
actions associated with the several syntactic types of a 
multiple-exit diagram were very different? There would 
still be an ambiguity in the generation of Polish. The an
swer to this question is that in the general case the prob
lem is real; with ALGOL and CoBOL it does not exist. 

Data Structure Analysis3 

Consider the processing of Data Division item descrip
tions by the Data Description Processor. Each clause gen
erates an operator in the Polish string which is passed along 
line C of Figure 4, accompanied perhaps by a numerical 
parameter like size. These clause operators are used to 
build description vectors which are then completed and 
checked according to a method given in another article 
[6]. The final item description vector and other non
Boolean-valued declared parameters such as size and point 
location are then given on path E to the Data Property 
Recorder which allocates storage for the object-program 
item and sequentially adds an entry to the Data Definition 
Table. At this time the index into the Data Definition 
Table of the entry just added is sent on line G to the Data 
Structure Recorder which controls its insertion into the 
Tree Table. 

The Data Structure Recorder handles qualification of 
data names by means of the Tree Table. We now consider 
the techniques used therein, because they are crucial to 
the one-pass handling of qualified names. First, observe 
that the purpose of the Tree and Data Definition tables is 
to supply enough information along with each data name 
in the Procedure Division Polish to enable the Generator 

8 Added in proof. The author has learned that Harold W. Law
son, Jr. of IBM Poughkeepsie delivered at the 1962 ACM Confer
ence a paper containing most of the material in this section: The 
Use of Chain List Matrices for the Analysis of COBOL Data 
Structures. 
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to generate complete code. The Polish written during the 
Procedure Division follows path F to the Data Structure 
Interpreter where sufficiently qualified names (which are 
actually sequences of integer indices into the name table) 
pick up new single integer values which are one-to-one 
with declared object-program data items, not with one
word names, as in the Williams algorithm [3]. This final 
integer value for each item is actually the index which 
came down path G when the Data Definition Table entry 
for that item was created. That is, this new representation 
of the data item name can be loaded into an index register 
to access directly from the Data Definition Table all the 
important information about the item. The procedural 
Polish moves along path H to the Data Property Inter
preter, where this access operation is performed and the 
new name of each data item is replaced by the set of proper-

formula: 

ACTIONS= 

I. WRITE 11+11 

2. WRITE 11*11 

3. WRITE THE DATA-NAME 

FIG. 10. Actions whose numbers are in square boxes generate 
trailing-operator Polish. 

POINTER TREE 

FIG 11. Structure of data and data-names in example 
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ties of this item. The procedural Polish then enters the 
Generator along path K. The Generator can create com
plete data-handling code because accompanying each 
operand in the Polish is a complete description of the 
corresponding object-program item. 

Consider the following hypothetical data structure: 

FD A 
01 B 

03 J 
03 K 

04 c 
04 J 

03 D 
01 c 

02 J 
02 D 

Assume further that the internal representations given by 
the Williams Name Reducer are as follows: 

A: 31 
B: 32 
C: 33 
D: 34 
J: 40 
K: 41. 

The structural relationships are shown by the solid lines 
of Figure 11. This structure can be represented by the 
following tree table: 

Loc Name Up 

001 A 31 000 
002 B 32 001 
003 J 40 002 
004 K 41 002 
005 c 33 004 
006 J 40 004 
007 D 34 002 
008 c 33 001 
009 J 40 008 
010 D 34 008 

LOC is not in the table, but gives the relative location of 
each word of the table. The NAME field contains the in
ternal representation of the data name and the UP field 
gives the LOC address of the immediate parent in the data 
structure. 

Notice that level numbers do not enter the table; they 
are used only to provide structural information. Spe
cifically, if two adjacent item descriptions in the Data 
Division have equal level numbers, they have the same 
parent, namely the most recent item with a lower level 
number; if the second item description has a higher level 
number it is a descendant of the first; if the second item 
description has a lower level number then there is a pre
ceding item description with the same level number as the 
second, such that all intervening level numbers are higher; 
these two have the same parent. The uP entry is 
constructed from the level number with the aid of a push
down list. The details of this construction will be given 
later. 
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The Data Structure Interpreter will accept sequences 
of name representations as the representations of quali
fied names, for example, (33, 41, 31, 0) for "C INK IN A". 
This will be called a qualification sequence. It is assumed 
that no name has 0 as an internal representation. 

Given the correct entrance point into the table (LOC = 
005), it is a simple matter to establish that (33, 41, 31, 0) 
is in the table; just start at the entrance point and match 
the names in the qualification sequence against the names 
in the NAME column, using the UP column to specify 
the next word to check. Thus, 33 matches against word 
005, 41 matches against word 004, 31 does not match 
against 002 but it does against 001. The matching process 
is successful unless a table word with the UP entry = 
000 is encountered before the qualification sequence is 
exhausted. The process is equivalent to crawling up the 
data structure tree matching elements of the qualification 
sequence with names at nodes of the tree. 

Entrance can be made into the table by a list of pointers. 
This list contains in location k the address of the first 
word of the tree table containing an occurrence of the name 
representation whose value is k. 

Loc Pointer 

31 001 
32 002 
33 005 
34 007 

40 003 
41 004 

Hence, entrance into the tree table is gained by looking at 
word k of the pointer table, where k is the first element of 
the qualification sequence. 

Now it remains only to take care of multiple occurrences 
of names. Consider "J IN C": (40, 33, 0). This would be 
found by jumping up the tree table from 009 to 008, except 
that there is no entrance to word 009. This entry is accom
plished by linking up all equal names with a NEXT 
column in the tree table corresponding to the dashed lines 
of Figure 11. The final form of the Tree Table follows. 

Loc Name Up Next Link 

001 31 000 000 
002 32 001 000 
003 40 002 006 
004 41 002 000 
005 33 004 008 
006 40 004 009 
007 34 002 010 
008 33 001 000 
009 40 008 000 
010 34 008 000 

The LINK column points to the entry in the Data Defini
tion Table corresponding to the data item represented by 
each word in the Tree Table; this is the index which is pro
vided by the Data Property Recorder along path G and 
which is the unique internal representation of declared 
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object-program data items. It should now be clear that 
path D carries ordered pairs (level number, name) for 
constructing the Tree Table entries. Path D could be 
eliminated by sending the ordered pairs through the Data 
Property Recorder. 

Figure 12 describes the program used by the Data Struc
ture Recorder for building the Tree Table from these 
ordered pairs. If ·the level FD is given the value 01 then 
one must be added to all level numbers before they enter 
this program. Figure 13 shows the program used by the 
Data Structure Interpreter for matching qualification se
quences. Notice that existence and uniqueness checks are 
made. 

A useful characteristic of the Tree Table method for 
representing data structures is the ease with which the 
immediate descendants of an item can be found in 
the table. Thus, the CORRESPONDING modifier is 
easily accomodated. 

In most realizations of the design presented here the 
Data Definition Table will be the largest of all. In source 
machines with small memories the Data Property Inter
preter, which is a trivial program, can be made a separate 
memory load, sharing storage only with the Data Defini
tion Table. Happily, this table can be written directly on 

FIG. 12. The Tree and Pointer table builder. Input is (LEVEL, 
DATA). LOC gives location of new Tree Table word. The counters 
i, LEVPARENT (1) and the arrays POINTER, NEXT, and UP 
are initialized to zero. The error violates rule at bottom of 
page VI-19 of COBOL manual. 
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tape by the Data Property Recorder; no access to it is re
quired except by the Data Property Interpreter. 

As different as the syntactic structures of ALGOL and 
CoBOL may appear to be, essentially the same compiler 
may be used for both source languages. Qualification in 
CoBoL has its analogy in ALGoL as follows: if every block 
is given an internally-generated name then the identifiers 
local to that block are qualified by the block name. The 
Tree Table thus provides a method for distinguishing 
multiple uses of the same identifier. 

Code Generation 

Because the Polish intermediate language is simply a 
minimal representation of the information in the source 
language, the form of the intermediate language is more 
naturally related to the source language than to the object 
language. This naturalness is evident in the simplicity of 
attaching actions to transition diagram paths once the 
embodiment of the source language definition in transi
tion diagrams has been decided. 

Whether a similar naturalness exists for the translation 
from intermediate language to object code is heavily de
pendent on the nature of the object machine. A measure of 
such naturalness might be given as follows. If the sequence 
of operators (as distinguished from operands) in the inter-

FIG. 13. Qualification sequence analyzer. Sequence is in QSEQ 
(1: ... ). LOC of found Tree Table word is in FIND. 
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mediate string strongly determines the sequence of opera
tors (as distinguished from addresses or names) in the ob
ject string, that is, if the form of the object code is pretty 
well independent of the content of the Data Definition 
Table, then the generation is natural. Unnatural genera
tion is characterized by large amounts of testing of infor
mation in the Data Definition Table before the form of the 
response to an operator in the intermediate code can be 
determined. Depending on the source language, this meas
ure of naturalness is one component of the characterization 
of an object computer as being "commercial" or "scien
tific." 

For example, the translation of an ALGOL intermediate 
language like that of Grau [5] to Burroughs B5000 code is 
natural to the point of being trivial by comparison with 
other machines. The translation of CoBOL intermediate 
language to the code of a word-oriented machine like the 
Burroughs 220 is painfully unnatural; the response to the 
MOVE-operator in the Case prototype compiler occupied 
27 pages of flowchart. 

The extension to code generation of techniques like those 
discussed above in connection with syntactical analysis 
and Polish generation has been considered [7] for natural 
generation processes. The construction of ge:neral methods 
for code generation which are as neat as those which exist 
for source-to-intermediate translation is an important un
solved problem. 

The experience of this author in construction of CoBOL 
generators is limited to the 220. The following observations 
may apply to other word-oriented computers. Much 
trouble in generating addresses, shift counts and partial 
field specifications can be saved if care is taken in choosing 
the representation of fields in the Data Definition Table. 
The 220 hardware representation of the ten nonsign digits 
within a word, counting from the left, is 1' 2, 3, ... ' 8, 9, 0. 
This was rejected in favor of the 7070representation: 0, 
1, 2, · · ·, 7, 8, 9. Using the latter representation all digits 
of a 10,000-word memory are addressed monotonely by 
a five-digit number. A field A is represented by three num
bers: NA is the four-digit memory address of the word con
taining the leftmost digit of A; LA is a single digit giving 
the position of the leftmost digit of A within N A; RA is the 
digit address (in the sense of the five-digit number, above) 
of the rightmost digit of A, relative to digit 0 of NA. Thus, 
RA - LA + 1 is the length of the field, the integer part of 
(RA + 10) + 1 is the number of words containing A, and 
RA (mod 10) is the position of the rightmost digit of A. The 
moral of this story is that the Generator should be able 
to do additive arithmetic in a radix equal to the number of 
bytes per word for each byte size of the object machine, 
so that no division need be performed. Once this represen
tation was chosen, the unnatural220 generators reduced to 
sequences of arithmetic tests on the Data Definition Table 
entries interspersed with some minor arithmetic opera
tions on these entries. Because of the space problem and 
the reassurance given by the Seventy-five Percent Rule, a 
natural choice of language in which to express the genera-
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tors was a simple three-address interpretive code. Such a 
choice leaves something to be desired in the way of ele
gance. 

Finally, we discuss the assignment of addresses to branch 
instructions. No one-pass compiler can generate complete 
code, since in response to a GO TO statement which jumps 
forward the compiler cannot possibly know on the first 
pass what address to put into the branch instruction. Since, 
with the subset of CoBoL being considered here, forward 
branching is the only reason for a second compiler pass, it 
is usually economical to perform the remaining operations 
at load time by fixing up the branch addresses in the object 
memory. 

To be more specific, assume that three statements, GO 
TO INDECISION, occur in the source program before the 
procedure name INDECISION occurs as a paragraph 
name. Furthermore, assume that the three GO TO's gen
erate unconditional branches (BUNs) at locations 0528, 
0742 and 0856; also the name INDECISION is finally de
fined to have the value 1234. Clearly, the desired coding is 

0528: BUN 1234 

0742: BUN 1234 

0856: BUN 1234. 

This is what actually gets generated: 

0528: BUN 0000 

0742: BUN 0528 

0856: BUN 0742 

xxxx: FIXUP(0856, 1234). 

The FIXUP(0856, 1234) is not loaded into memory but 
is an instruction to the loader to fix up the address of the 
word in location 0856 to be "1234". Before making the 
change, the loader checks for zero in the address; if the 
address is zero loading is resumed after the fixup 
terminates; otherwise the nonzero address specifies the 
next location to be fixed up. 

In the compiler this technique requires storage for an 
address plus a bit for each unique procedure name. The 
bit records whether the value of the procedure name has 
been defined yet by the occurrence of the name in a para
graph or section heading. The address storage cell, ini
tialized to zero, holds the value of the name (if it has been 
defined) or the location of the most recent forward branch 
to that name; this cell provides the address of every 
branch instruction generated. 

The object location of each instruction generated is de
termined by a location counter, LC, which records the lo
cation of the instruction currently being generated and is 
incremented immediately after the generation of each in
struction. 

As Figure 14 shows, the Polish operators controlling 
sequencing in conditional sentences are . written at the 
places given below in parentheses. 
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IF condition (TW) statement ELSE (FW) statement (EST) 
IF condition (TW) statement (FW) (EST). (ESN) 

Notice that the second form never appears without ending 
in a period. The operator names TW, TN, FW, FN, EST, 
and ESN are mnemonics for True is now, True is next, 
False is now, False is next, End statement, and End sen
tence, respectively. Where instead of statement the phrase 
NEXT SENTENCE occurs, the operators TW and FW 
are replaced by TN and FN. 

The three basic control paths within a conditional state
ment are shown as dotted arrows below. They are given the 
names TRUE, FALSE, and AROUND. 

FALSE r---------------------, 
I TRUE I 

IF condition ----~ (TW) statement-- ELSE (FW) L_-+ statement r-~ (EST) 
I I 

;-~~~N~-----------! 
A fourth path, called NEXT, handles NEXT SENTENCE 
and will be treated later. When conditional statements are 
nested, the TRUE, FALSE, and AROUND paths exhibit 
nested last-in-first-out (LIFO) behavior. As might be ex
pected, then, three LIFO stacks called TRUE, FALSE' 

statement: 

imperative 
statement 

IF 

FIG. 14. Production of sequence-controlling operators. Square 
boxes contain names of symbols written by actions. 
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and AROUND are used by the Generator to create these 
paths. The following table defines the beginning and end 
of each path. 

Path Beginning End 

TRUE test operator TW or TN 
AROUND FW or FN EST 
FALSE test operator FW or FN 

The test operator in the Polish is the last thing resulting 
from a test in a condition and generates code for a forked 
conditional branch with two branch addresses, a TRUE and 
a FALSE address. 

Before specifying the generator actions in response to 
the several sequential operators let us define a few terms. 
There are the three stacks, the location counter LC, and 
two cells TEMP and NEXT. The top element of the 
TRUE (FALSE, AROUND) stack stores the location of 
the most recent true (false, around) branch instruction. 
(The AROUND stack serves double duty and also stores 
the locations of beginnings of test coding for use in pro
cessing of AND and OR operators.) The NEXT cell con
tains the location of the most recently generated branch 
to the beginning of the next sentence. 

Several standard procedures occur in the Generator. 
GENERATE(x) writes the coding or fixup x. (FIXUP(L, 
A) is as above, and when read by the loader causes location 
L to have "A" put into its address, and so on.) ON(A, S) 
puts the contents of A onto the LIFO stack S. OFF(S) 
has as its value the top of the stackS, which is removed in 
the process. For example, ON(OFF(S), T) transfers the 
top element fromS toT. 

Table 3 defines the Generator responses to the sequential 

TABLE 3. GENERATOR RESPONSES TO SEQUENTIAL AND BooLEAN 
OPERATORS 

Operator 

TW 

TN 

FW 

FN 

EST 
ESN 
NOT 

OR 

AND 

Response 

OFF(AROUND); 
GENERATE(FIXUP(OFF(TRUE), LC)) 

OFF(AROUND); TEMP <-OFF(TRUE); 
GENERATE(FIXUP(TEMP, NEXT)); 
NEXT<- TEMP 

ON(LC, AROUND); GENERATE(BUN 0); 
GENERATE(FIXUP(OFF(FALSE), LC)) 

ON(LC, AROUND); GENERATE(BUN 0); 
TEMP <- OFF (FALSE); 
GENERATE(FIXUP(TEMP, NEXT)); 
NEXT<- TEMP 

GENERATE(FIXUP(OFF(AROUND), LC)) 
GENERATE(FIXUP(NEXT, LC)); NEXT<- 0 
TEMP<- OFF(FALSE); 

ON(OFF(TRUE), FALSE); ON(TEMP, TRUE) 
OFF(AROUND); TEMP <- OFF(TRUE); 

GENERATE(FIXUP(TEMP, OFF(TRUE))); 
ON(TEMP, TRUE); TEMP <- OFF(FALSE); 
GENERATE(FIXUP(OFF(FALSE), 
OFF(AROUND))); ON(TEMP, FALSE); 
ON(LC, AROUND) 

OFF(AROUND); TEMP <- OFF(FALSE); 
GENERATE(FIXUP(TEMP, OFF(FALSE))); 
ON(TEMP, FALSE); TEMP<- OFF(TRUE); 
GENERATE(FIXUP(OFF(TRUE), 
OFF(AROUND))); ON(TEMP, TRUE); 
ON(LC, AROUND) 
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and Boolean operators. Note that AND, OR, and NOT 
generate no coding. 

Depending on the code structure of the object machine, 
more than two branch addresses can be generated per test. 
Let [TEMP] denote the contents of TEMP, and let z 
be a variable whose values are the stack names TRUE and 
FALSE. Each time a z-branch must be generated the 
following occurs: 

TEMP<- OFF(z); ON(LC, z); 
GENERATE( BRANCH [TEMP] ). 

Before any code generation for a test, ON(O, z). At the 
end of the code generation for each test, ON(LC, 
AROUND). 

This brief treatment of conditions may be clarified for 
the studious reader by an example. For the sake of dis
cussion assume the following coding to be generated in re
sponse to the test operators LSS, EQL, and GTR: 

A,B,LSS: LDA A, SUB B, BNA true address, 
BUN false address; 

A,B,EQL: LDA A, SUB B, BZA true address, 
BUN false address; 

A,B,GTR: LDA B, SUB A, BNA true address, 
BUN false address. 

The COBOL sentence to be considered is the following: 
IF X > Y IF A = B OR X = Y MOVE C TO D 

ELSE NEXT SENTENCE 
ELSE IF C < D NEXT SENTENCE ELSE 

MOVEETOF. 
The Diagrammer produces the following Polish: 

X, Y, GTR, TW, A, B, EQL, X, Y, EQL, OR, 
TW, C, D, MOVE, FN, EST, 

FW, C, D, LSS, TN, FW, E, F, MOVE, 
EST,EST,ESN. 

T,he Generator's response is given in Table 5. After loading, 
the code appears in memory as shown in Table 4. 

Except for the handling of the "="operator, which re
quires one bit of storage at object time, the techniques 
given here have direct applicability to the translation of 
ALGOL; in fact, they are equivalent to those given by 
Huskey and Wattenburg [8], with some modification for 
reducing storage requirements in the Generator when 
generation is unnatural. See also Arden; Galler, and 
Graham [9] for optimization techniques which might be 
useful for some object computers when Generator space 
is available. 

On Producing Compilers 

In the past few years there has been an expenditure of 
energy toward both writing and speaking about compilers 
which will generate copies of themselves. When a claim 
of superiority for such compilers is made it usually says 
that a compiler which can reproduce itself greatly simpli
fies the conversion to a new source or object language. 
Usually the arguments given in support of this claim take 
little or no account of the set of available methods which 
the proposed technique would supplant. 

No compiler-writing technique will eliminate the re-
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quirement to analyze the task which the compiler to be 
created must perform, although it can provide a convenient 
language with which to carry out the analysis. The chief 
purpose of a compiler-writing technique is to reduce the 
labor which follows analysis and which is necessary for the 
production of the actual compiler. There are other ways to 
create a cheap compiler than simply to use a compiler as 
a programming aid. This article attempts to suggest one 
such way. 

If a fast compiler is desired more can be said. The front 
end of any fast, one pass compiler will be written with an 
assembler; that's a corollary of the Seventy-five Percent 
Rule and some common sense about efficiency of com
piler-generated code. Furthermore, the really fast com
pilers will have only one pass; that's the result of 
an analysis of how much extra work must be done by a 
multi-pass compiler. Notice that a corollary of these two 
statements is that really fast compilers can be written only 
for source languages which permit one-pass compilation. 
This proposition ought to be taken into account by lan
guage designers. 

Our experience in the development of the prototype 
suggests that one analyst-programmer, with one or two 
understanding individuals around to talk to occasionally, 
can produce a CoBOL compiler (sans library and object
program I-0 control system) in a year or less, if he is pro
vided with an assembler which permits incorporating all 
the special formats he will need into the assembly lan
guage. 

Acknowledgments. Joseph Speroni of the Case Com
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specific CoBOL effort was begun, the author worked with 

TABLE 4. APPEARANCE OF GENERATOR OUTPUT AFTER LOADING 

1000 LDA Y 
1001 SUB X 
1002 BNA 1004 
1003 BUN 1016 
1004 LDA A 
1005 SUB B 
1006 BZA 1012 
1007 BUN 1008 
1008 LDA X 
1009 SUB Y 
1010 BZA 1012 
1011 BUN 1023 
1012 LDA C 
1013 STA D 
1014 BUN 1015 
1015 BUN 1023 
1016 LDA C 
1017 SUB D 
1018 BN A 1023 
1019 BUN 1021 
1020 BUN 1023 
1021 LDA E 
1022 STA F 
1023 next sentence 
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TABLE 5. 

Polish Output 

Initial state 
X 
y 

GTR 

TW 
A 
B 
EQL 

X 
y 
EQL 

OR 

TW 
c 
D 
MOVE 

FN 

EST 
FW 

c 
D 
LSS 

TN 
FW 

E 
F 
MOVE 

EST 
EST 
ESN 

1000: LDA Y 
1001: SUB X 
1002: BNA 0 
1003: BUN 0 
FIXUP(1002, 1004) 

1004: 
1005: 
1006: 
1007: 

LDAA 
SUBB 
BZAO 
BUNO 

1008: LDA X 
1009: SUB Y 
1010: BZA 0 
1011: BUN 0 

FIXUP(1010, 1006) 
FIXUP(1007, 1008) 
FIXUP(1010, 1012) 

1012: LDA C 
1013: STA D 
1014: BUN 0 
FIXUP(1011, 0) 
FIXUP(1014, 1015) 
1015: BUN 0 
FIXUP(1003, 1016) 

1016: LDA C 
1017: SUB D 
1018: BNA 0 
1019: BUN 0 
FIXUP(1018, 1011) 
1020: BUN 0 
FIXUP(1019, 1021) 

1021: LDA E 
1022: STA F 
FIXUP(1020, 1023) 
FIXUP(1015, 1023) 
FIXUP(1018, 1023) 
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GENERATOR RESPONSES TO INPUT IN EXAMPLE 

Internal states after response 

LC = 1000, NEXT = 0 

LC = 1001, FALSE= 0, TRUE= 0 
LC = 1002, TEMP = 0, TRUE = 1002 
LC = 1003, TEMP= 0, FALSE= 1003 
LC = 1004, AROUND = 1004 
AROUND empty, TRUE empty 

LC = 1005, FALSE = 100310, TRUE = 0 
LC = 1006, TEMP = 0, TRUE = 1006 
LC = 1007, TEMP = 0, FALSE = 100311007 
LC = 1008, AROUND = 1008 

LC = 1009, FALSE= 10031100710, TRUE= 100610 
LC = 1010, TEMP = 0, TRUE = 100611010 
LC = 1011, TEMP= 0, FALSE= 10031100711011 
LC = 1012, AROUND = 100811012 
AROUND = 1008, TEMP = 1010, TRUE = 1006 
TRUE = 1010, TEMP = 1011, FALSE = 100311007 
FALSE = 100311011, AROUND = 1012 
AROUND empty, TRUE empty 

LC = 1013 
LC = 1014 
AROUND = 1014, LC = 1015, TEMP = 1011, FALSE = 1003 
NEXT= 1011 
AROUND empty 
AROUND = 1015, LC = 1016 
FALSE empty 

FALSE= 0, TRUE= 0, LC = 1017 
LC = 1018, TEMP = 0, TRUE = 1018 
LC = 1019, TEMP= 0, FALSE= 1019 
LC = 1020, AROUND = 101511020 
AROUND = 1015, TEMP= 1018, TRUE empty, NEXT= 1018 
AROUND = 101511020, LC = 1021 
FALSE empty 

LC = 1022 
LC = 1023 
AROUND = 1015 
AROUND empty 
NEXT= 0 
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